首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gd@C82(OH)40 has been developed as a new generation of MRI contrast agent. But recently, it was found that Gd@C82(OH) x with a larger number of OH (x>36) would lead to cage break and hence, release of highly toxic Gd ions. We synthesized the more stable Gd@C82(OH) x with less OH-number, Gd@C82(OH)16, and studied its proton relaxivity and MRI images. The results indicate that Gd@C82(OH)16 also gives high proton relaxivity, even higher than that of (NMG)2-Gd-DTPA. The bio-distribution indicated that Gd@C82(OH)16 tends to be entrapped in the liver and kidney and remained in tissue for about 2 hours. The results suggest that the more stable metallofullerene derivative Gd@C82(OH)16 can be the potential candidate of the new MRI contrast agent.  相似文献   

2.
《化学:亚洲杂志》2017,12(20):2646-2651
Herein, A549 tumor cell proliferation was confirmed to be positively dependent on the concentration of Fe3+ or transferrin (Tf). Gd@C82(OH)22 or C60(OH)22 effectively inhibited the iron uptake and the subsequent proliferation of A549 cells. The conformational changes of Tf mixed with FeCl3, GdCl3, C60(OH)22 or Gd@C82(OH)22 were obtained by SAXS. The results demonstrate that Tf homodimers can be decomposed into monomers in the presence of FeCl3, GdCl3 or C60(OH)22, but associated into tetramers in the presence of Gd@C82(OH)22. The larger change of SAXS shapes between Tf+C60(OH)22 and Tf+FeCl3 implies that C60(OH)22 is bound to Tf, blocking the iron‐binding site. The larger deviation of the SAXS shape from a possible crystal structure of Tf tetramer implies that Gd@C82(OH)22 is bound to the Tf tetramer, thus disturbing iron transport. This study well explains the inhibition mechanism of Gd@C82(OH)22 and C60(OH)22 on the iron uptake and the proliferation of A549 tumor cells and highlights the specific interactions of a nanomedicine with the target biomolecules in cancer therapy.  相似文献   

3.
《Electroanalysis》2005,17(2):178-181
Voltammetric behavior of water‐soluble endohedral metallofullerene derivatives Gd@C82(OH)5(NHCH2COOH)9 (GN) and Gd@C82(OH)6(NHCH2CH2SO3H)8 (GS) was characterized in 0.1 M KCl solution by CV and DPV. They showed similar redox behavior, that is, a reversible electroreduction process on HMDE was found; in the mean time, an irreversible oxidation process and an irreversible reduction process on GC electrodes were also observed. The results reveal that these two water‐soluble endohedral metallofullerene derivatives have good electron donating ability and poor electron accepting ability due to hydroxy groups, aminoacetic acid and aminoethyl sulfonic acid connected to the C82 cage in comparison with Gd@C82.  相似文献   

4.
The endohedral lanthanidofullerenes, an important type of organolanthanides, are stabilized by the delocalization of the negative charges on the cages of fullerenes. Since the discovery of these classes of carbon compounds and their unusual structures and properties of these molecules, many potential applications have been suggested. Unsaturated thiocrown ethers with cis-geometry are a group of crown ethers that, in light of the size of their cavities and their conformational restriction compared to a corresponding saturated system (19), demonstrate interesting properties for physicochemical studies. Endohedral lanthanidofullerenes M@Cx (x = 82 and M = Ce, Gd) were introduced as a new class of the spherical fullerene group with unique properties. Formation of endohedral metallofullerenes is thought to involve the transfer of electrons from the encapsulated metal atom(s) to the surrounding fullerene cage. Two of these molecules are the Ce@C82 (10) and Gd@C82 (11). The supramolecular complexes of 1–9 with Ce@C82 (10) and Gd@C82 (11) have been shown to possess a host–guest interaction for electron transfer processes, and these behaviors have previously been reported. Topological indices have been successfully used to construct effective and useful mathematical methods for finding good relationships between structural data and the various chemical and physical properties. To establish a good structural relationship between the structures of 1–9 and M@Cx that were introduced here, an index that is represented as μcs was utilized. This index is the ratio of summation of the number of carbon atoms (nc ) and the number of sulfur atoms (ns ) to the product of these two numbers for 1–9. In this study, the relationship between this index and oxidation potential ( oxE1 ) of 1–9, as well as the free energy of electron transfer (ΔGet , by the Rehm-Weller equation) between 1–9 and 10 and 11 as [X-UT-Y][Ce@C82] (12) and [X-UT-Y][Gd@C82] (13) complexes, is presented.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

5.
Cisplatin is a commonly used chemotherapeutic drug in cancer treatment, whereas Gd@C82(OH)22 is a new nanomaterial anti-tumor agent. In this study, we determined intracellular Gd@C82(OH)22 and cisplatin after treatment of Hela and 16HBE cells by single cell inductively coupled plasma-mass spectrometry (SC-ICP-MS), which could provide quantitative information at a single-cell level. The cell digestion method validated the accuracy of the SC-ICP-MS. The concentrations of Gd@C82(OH)22 and cisplatin in cells at different exposure times and doses were studied. The SC-ICP-MS is a promising complement to available methods for single cell analysis and is anticipated to be applied further to biomedical research.
Graphical Abstract The quantitative results of Gd@C82(OH)22 in single cells determined by SC-ICP-MS and acid digestion method, respectively
  相似文献   

6.
The electrochemical properties of a series of metallofullerenes with different cages, namely, Yb@C74(II), Yb@C76(I, II), Yb@C78, Yb@C80, Yb@C82(I, II, III), and Yb@C84(II, III, IV), have been systematically investigated by cyclic and differential pulse voltammetry experiments for the first time. This article discusses the electronic structures of these metallofullerenes based on the results from these experiments. From previous electrochemical work and the above discussion, it is concluded that the nondegenerate LUMO is a common characteristic of the electronic structures of the higher fullerenes and monometallofullerenes. In addition, the effect of the cage on the electronic structure and properties of the metallofullerene is estimated from the plot of the reduction potential versus the carbon number of the metallofullerene. This estimation shows that usually the electronic structure and properties of the metallofullerene vary with cage size and structure. The cage structure is of particular importance for determining the electronic structure and properties. Moreover, an explanation concerning the abundance and stability of C82‐based trivalent monometallofullerenes is given from an electronic structural standpoint.  相似文献   

7.
The water-solubilization of metallofullerenes is important for their potential applications, but their formation processes are still not clear, and the formation yield is uncontrollable. In this paper, we quantitatively studied the water-solubilizing process of Gd@C82 with hydroxylation reaction using ICP-MASS techniques. For the first time, it was found that the formation yield of the multihydroxylated Gd@C82 is declined quickly with the break up of carbon cage of Gd@C82 in the hydroxylated processes. The observation revealed a way to control the hydroxylation processes and increase the formation yield.  相似文献   

8.
Cyclic voltammogram (CV) and differential pulse voltammogram (DPV) of Gd@C82 were measured by using mixed solvent system and low temperature. The sixth and seventh electron transfers for Gd@C82 were observed under this condition. Analysis of its electrochemical data and the changes of its UV–VIS–NIR spectrum indicated that Gd@C82(n−) (n=1,3) anions had been generated by chemical method.  相似文献   

9.
First principle calculations based on density functional theory are conducted to investigate the influence of metal cations including Mg2+, Ca2+, Sr2+, Ba2+, La (OH)2+ and Ce (OH)2+ in the small cage of zeolite on the electronic environment of adjacent active center, Cu+ in CuY zeolite as well as the process of CO insertion into CH3O to form CH3OCO for oxidative carbonylation of methanol. The study explains the theoretical reasons for the effects of metal cations on the catalytic activity of zeolites. It was found that, the presence of co-cations in the small cage can affect the electronic properties and also the catalytic activity in two ways. Firstly, the presence of co-cations, viz., Ca2+, Sr2+, Mg2+, Ba2+ and La species in small cage hinders the migration of active Cu+ cations from the super cage to small cage. Secondly, the co-cations greatly affect the charge transfer from zeolite framework to Cu+ present in the adjacent super cage, leading to the increase of the net charge and binding energy of Cu+. The findings can improve the CO adsorption and insertion efficiencies, and the stability of transition states, which results in the enhanced catalytic activity of corresponding zeolites.  相似文献   

10.
Successful isolation and characterization of a series of Er-based dimetallofullerenes present valuable insights into the realm of metal–metal bonding. These species are crystallographically identified as Er2@Cs(6)-C82, Er2@C3v(8)-C82, Er2@C1(12)-C84, and Er2@C2v(9)-C86, in which the structure of the C1(12)-C84 cage is unambiguously characterized for the first time by single-crystal X-ray diffraction. Interestingly, natural bond orbital analysis demonstrates that the two Er atoms in Er2@Cs(6)-C82, Er2@C3v(8)-C82, and Er2@C2v(9)-C86 form a two-electron-two-center Er−Er bond. However, for Er2@C1(12)-C84, with the longest Er⋅⋅⋅Er distance, a one-electron-two-center Er−Er bond may exist. Thus, the difference in the Er⋅⋅⋅Er separation indicates distinct metal bonding natures, suggesting a distance-dependent bonding behavior for the internal dimetallic cluster. Additionally, electrochemical studies suggest that Er2@C82–86 are good electron donors instead of electron acceptors. Hence, this finding initiates a connection between metal–metal bonding chemistry and fullerene chemistry.  相似文献   

11.

Solutions of endohedral Gd@C82(C 2v ) and Ho@C82(C 2v ) metallofullerenes are studied by means of visible and near-IR spectroscopy upon their conversion from neutral to the anionic form via a redox reaction with the electron donor potassium perchlorotriphenylmethide K(18-crown-6)[C(C6Cl5)3]. The concentrations of the studied solutions of endohedral Gd@C82(C 2v ) and Ho@C82(C 2v ) metallofullerenes in o-dichlorobenzene were determined from the spectroscopic data, and their molar extinction coefficients are calculated.

  相似文献   

12.
Symmetric and asymmetric (Janus-type) new “lantern cage” siloxanes (PhSiO1.5)4(Me2SiO)4(RSiO1.5)4 (R=Ph or iBu) were synthesized through reaction of all-cis-[PhSi(OSiMe2Br)O]4 with all-cis-[RSi(OH)O]4 (R=Ph or iBu). These precursors were obtained by facile two or three-step reactions from commercially available compounds. The spectroscopic properties of the resulting products were fully characterized and they showed high thermal stability and sublimation without decomposition. The crystal structures clearly indicated that the internal vacancy volumes of the lantern cages are considerably larger than that of octaphenylsilsesquioxane (PhSiO1.5)8. DFT calculations of the lantern cage showed a distinctly different electronic state from that of octasilsesquioxane. These results suggest that lantern cage siloxanes have a characteristic “field” in the molecule.  相似文献   

13.
The combination of polyoxoniobates (PONbs) with 3d metal ions, azoles, and organoamines is a general synthetic procedure for making unprecedented PONb metal complex cage materials, including discrete molecular cages and extended cage frameworks. By this method, the first two PONb metal complex cages K4@{[Cu29(OH)7(H2O)2(en)8(trz)21][Nb24O67(OH)2(H2O)3]4} and [Cu(en)2]@{[Cu2(en)2(trz)2]6(Nb68O188)} have been made. The former exhibits a huge tetrahedral cage with more than 120 metal centers, which is the largest inorganic–organic hybrid PONb known to date. The later shows a large cubic cage, which can act as building blocks for cage‐based extended assembly to form a 3D cage framework {[Cu(en)2]@{[Cu2(trz)2(en)2]6[H10Nb68O188]}}. These materials exhibit visible‐light‐driven photocatalytic H2 evolution activity and high vapor adsorption capacity. The results hold promise for developing both novel cage materials and largely unexplored inorganic–organic hybrid PONb chemistry.  相似文献   

14.
Although the major isomers of M@C82 (namely M@C2v(9)‐C82, where M is a trivalent rare‐earth metal) have been intensively investigated, the lability of the minor isomers has meant that they have been little studied. Herein, the first isolation and crystallographic characterization of the minor Y@C82 isomer, unambiguously assigned as Y@Cs(6)‐C82 by cocrystallization with Ni(octaethylporphyrin), is reported. Unexpectedly, a regioselective dimerization is observed in the crystalline state of Y@Cs(6)‐C82. In sharp contrast, no dimerization occurs for the major isomer Y@C2v(9)‐C82 under the same conditions, indicating a cage‐symmetry‐induced dimerization process. Further experimental and theoretical results disclose that the regioselective dimer formation is a consequence of the localization of high spin density on a special cage‐carbon atom of Y@Cs(6)‐C82 which is caused by the steady displacement of the Y atom inside the Cs(6)‐C82 cage.  相似文献   

15.
An efficient method for the synthesis of trifluoromethyl derivatives of endohedral gadolinium-containing metallofullerenes was proposed. High-purity (98–99%) trifluoromethyl derivatives Gd@C82(CF3)5 (two isomers) and Gd2@C80(CF3) have been synthesized for the first time. They were isolated and characterized by HPLC, MALDI-TOF mass spectrometry, and UV-Vis spectroscopy. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1457–1462, July, 2008.  相似文献   

16.
We report that Ce@C2v(9)‐C82 forms a centrosymmetric dimer when co‐crystallized with Ni(OEP) (OEP = octaethylporphyrin dianion). The crystal structure of {Ce@C2v(9)‐C82}2?2[Ni(OEP)]?4 C6H6 shows that a new C?C bond with a bond length of 1.605(5) Å connects the two cages. The high spin density of the singly occupied molecular orbital (SOMO) on the cage and the pyramidalization of the cage are factors that favor dimerization. In contrast, the treatment of Ni(OEP) with M@C2v(9)‐C82 (M = La, Sc, and Y) results in crystallization of monomeric endohedral fullerenes. A systematic comparison of the X‐ray structures of M@C2v(9)‐C82 (M = Sc, Y, La, Ce, Gd, Yb, and Sm) reveals that the major metal site in each case is located at an off‐center position adjacent to a hexagonal ring along the C2 axis of the C2v(9)‐C82 cage. DFT calculations at the M06‐2X level revealed that the positions of the metal centers in these metallofullerenes M@C2v(9)‐C82 (M = Sc, Y, and Ce), as determined by single‐crystal X‐ray structure studies, correspond to an energy minimum for each compound.  相似文献   

17.
The structural energies of the endohedral derivatives of buckminsterfullerenes Gd@C60(CHR)2 and Gd@C80(CHR)2 were calculated by quantum-chemical methods – semiempirical PM3 and nonempirical RHF SCF MO LCAO with the S. Huzinaga MINI minimum basis set and GAMESS software.  相似文献   

18.
The reactions of cyclohexenephosphonic acid (C6H9PO3H2) and 3-(2-pyridyl)pyrazole (2-pyPzH) with copper(II) chloride and copper(II) bromide affords a 1-D compound [Cu(2-pyPz)Cl] (1) and a decanuclear [Cu10(OH)4(C6H9PO3)6(2-pyPz)4] (2) cage complex. In 1, adjacent copper ions are bridged by two 2-pyPz ligands into dimers, which are further linked by Cl? into a ladder-like chain. Compound 2 has a decanuclear cage structure, the overall cage can be viewed as composed of two Cu4(OH)2(2-pyPz)2 wings that are bridged by a central Cu2P2O6 rim. Variable-temperature magnetic susceptibility studies indicate that both compounds show antiferromagnetic interactions between copper centers.  相似文献   

19.
Chemical functionalization of endohedral metallofullerenes (EMFs) is essential for the application of these novel carbon materials. Actinide EMFs, a new EMF family member, have presented unique molecular and electronic structures but their chemical properties remain unexplored. Here, for the first time, we report the chemical functionalization of actinide EMFs, in which the photochemical reaction of Th@C3v(8)-C82 and U@C2v(9)-C82 with 2-adamantane-2,3′-[3H]-diazirine (AdN2, 1) was systematically investigated. The combined HPLC and MALDI-TOF analyses show that carbene addition by photochemical reaction afforded three isomers of Th@C3v(8)-C82Ad and four isomers of U@C2v(9)-C82Ad (Ad = adamantylidene), presenting notably higher reactivity than their lanthanide analogs. Among these novel EMF derivatives, Th@C3v(8)-C82Ad(I, II, III) and U@C2v(9)-C82Ad(I, II, III) were successfully isolated and were characterized by UV-vis-NIR spectroscopy. In particular, the molecular structures of first actinide fullerene derivatives, Th@C3v(8)-C82Ad(I) and U@C2v(9)-C82Ad(I), were unambiguously determined by single crystal X-ray crystallography, both of which show a [6,6]-open cage structure. In addition, isomerization of Th@C3v(8)-C82Ad(II), Th@C3v(8)-C82Ad(III), U@C2v(9)-C82Ad(II) and U@C2v(9)-C82Ad(III) was observed at room temperature. Computational studies suggest that the attached carbon atoms on the cages of both Th@C3v(8)-C82Ad(I) and U@C2v(9)-C82Ad(I) have the largest negative charges, thus facilitating the electrophilic attack. Furthermore, it reveals that, compared to their lanthanide analogs, Th@C3v(8)-C82 and U@C2v(9)-C82 have much closer metal–cage distance, increased metal-to-cage charge transfer, and strong metal–cage interactions stemming from the significant contribution of extended Th-5f and U-5f orbitals to the occupied molecular orbitals, all of which give rise to their unusual high reactivity. This study provides first insights into the exceptional chemical properties of actinide endohedral fullerenes, which pave ways for the future functionalization and application of these novel EMF compounds.

Photochemical reaction of Th@C3v(8)-C82 and U@C2v(9)-C82 with 2-adamantane-2,3′-[3H]-diazirine (AdN2, 1) afforded three isomers of Th@C3v(8)-C82Ad and four isomers of U@C2v(9)-C82Ad (Ad = adamantylidene), respectively.  相似文献   

20.
In the search for photocatalysts that can directly utilize near‐IR (NIR) light, we investigated three oxides Cu3(OH)4SO4 (antlerite), Cu4(OH)6SO4, and Cu2(OH)3Cl by photodecomposing 2,4‐dichlorophenol over them under NIR irradiation and by comparing their electronic structures with that of the known NIR photocatalyst Cu2(OH)PO4. Both Cu3(OH)4SO4 and Cu4(OH)6SO4 are NIR photocatalysts, but Cu2(OH)3Cl is not. Thus, in addition to the presence of two different CuOm and Cu′On polyhedra linked with Cu?O?Cu′ bridges, the presence of acceptor groups (e.g., SO4, PO4) linked to the metal oxygen polyhedra is necessary for NIR photocatalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号