首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated SmC* films sandwiched between silane coated glass plates and observed formation of textures exhibiting a uniform tilt of the smectic layers with respect to the boundary plates. The layer tilt angle increases from zero to as the sample is cooled from the smectic A phase to room temperature. These films show linear electro-optical effects because the permanent polarization can be aligned so that it has a component parallel to the applied field without changing the layer structure. Our analysis indicates that mainly two effects determine the layer tilt. On the one hand, the surface tension tends to minimise the layer tilt. On the other hand, the surface energy promotes the director to be normal to the boundary plates. Received 17 July 1998  相似文献   

2.
We study numerically the director and orientational order parameter configurations in a nematic liquid crystal around a two-dimensional spherical particle on the basis of the tensor order parameter formalism. To properly account for the large length scale difference between the particle and the accompanying orientational defect, we devise an adaptive grid scheme in which the lattice spacing is automatically and locally adjusted in response to the spatial gradient of the orientational order parameter. This adaptive grid scheme is useful in studying dynamical as well as static orientational structures. We present a simulation result which shows how a hedgehog defect of topological charge -1 becomes unstable in two dimensions, and splits into a defect pair of topological charge -1/2, located symmetrically around the particle. Received 14 September 2000 and Received in final form 27 December 2000  相似文献   

3.
We study the director field around a spherical particle immersed in a uniformly aligned nematic liquid crystal and assume that the molecules prefer a homeotropic orientation at the surface of the particle. Three structures are possible: a dipole, a Saturn-ring, and a surface-ring configuration, which we investigate by numerically minimizing the Frank free energy supplemented by a magnetic-field and a surface term. In the dipole configuration, which is the absolutely stable structure for micron-size particles and sufficiently strong surface anchoring, a twist transition is found and analyzed. We show that a transition from the dipole to the Saturn ring configuration is induced by either decreasing the particle size or by applying a magnetic field. The effect of metastability and the occurrence of hysteresis in connection with a magnetic field are discussed. The surface-ring configuration appears when the surface-anchoring strength W is reduced. It is also favored by a large saddle-splay constant K24. A comparison with recent experiments [#!itapdb:Poulin1997!#,#!itapdb:Poulin1998!#] gives a lower bound for W, i.e., for the interface of water and pentylcyanobiphenyl (5CB) in the presence of the surfactant sodium dodecyl sulfate. Received 2 November 1998  相似文献   

4.
The behaviour of the antiferroelectric SmCA liquid crystal phase under applied electric field is discussed theoretically. The phase diagram involving the SmA, SmCA and SmC A * phases is worked out and shown to exhibit a Lifshitz critical point. The deformation of the bilayer structures induced by the field transforms the SmCA phases into a ferrielectric phase whose specific configuration is described. Received: 23 October 1997 / Revised: 8 April 1998 / Accepted: 14 July 1998  相似文献   

5.
Stability and geometry of the lyotropic periodic cubic mesophases are considered in the framework of a general symmetry based phenomenological approach. A limited number of cubic structural types is shown to be formed by amphiphilic molecular aggregates due to the specific nature of self-organizing units. The related thermodynamic models predict topology of phase diagrams and specific features of transitions between isotropic, lamellar, cubic bicontinuous and cubic micellar phases. Received 25 February 1999 and Received in final form 29 June 1999  相似文献   

6.
The Frank elasticity constants which describe splay (K 1), twist (K 2), and bend (K 3) distortion modes are investigated for 4-n-pentyl-4'-cyanobiphenyl (5CB) in the nematic liquid crystal. The calculations rest on statistical-mechanical approaches where the absolute values of K i (i=1,2,3) are dependent on the direct correlation function (DCF) of the corresponding nematic state. The DCF was determined using the pair correlation function by solving the Ornstein-Zernike equation. The pair correlation function, in turn, was obtained from molecular dynamics (MD) trajectory. Three different approaches for calculations of the elasticity constants were employed based on different level of approximation about the orientational order and molecular correlations. The best agreement with experimental values of elasticity constants was obtained in a model where the full orientational distribution function was used. In addition we have investigated the approximation about spherical distribution of the intermolecular vectors in the nematic phase, often used in derivation of various mean-field theories and employed here for the construction of the DCF. We found that this assumption is not strictly valid, in particular a strong deviation from the isotropic distribution is observed for short intermolecular distances. Received 22 March 2000 and Received in final form 9 June 2000  相似文献   

7.
We report X-ray diffraction experiments performed on an antiferroelectric compound exhibiting a very rich polymorphism (). The structural study of the unknown phases only allows us to exclude some phenomenological models. The use of oriented planar samples prepared between solid glass plates generate by cooling from the phase a chevron structure of tilted layers already well characterized for the phase. The extensive analysis of the evolution of the chevron structure through the numerous smectic-smectic phase transitions provides some original information in three distinct areas: fundamental data on the important physical parameters in the chevron structure formation, detection of the smectic-smectic phases transition by small change of the chevron structure, and information on the local molecular order induced by the alignment layer (interaction with a rubbed polymer). Received: 13 November 1996 / Received in final form: 19 January 1997 / Accepted: 30 January 1998  相似文献   

8.
Recently, it was observed that water droplets suspended in a nematic liquid crystal form linear chains [Poulin et al., Science 275, 1770 (1997)]. The chaining occurs, e.g., in a large nematic drop with homeotropic boundary conditions at all the surfaces. Between each pair of water droplets a point defect in the liquid crystalline order was found in accordance with topological constraints. This point defect causes a repulsion between the water droplets. In our numerical investigation we limit ourselves to a chain of two droplets. For such a complex geometry we use the method of finite elements to minimize the Frank free energy. We confirm an experimental observation that the distance d of the point defect from the surface of a water droplet scales with the radius r of the droplet like .When the water droplets are moved apart, we find that the point defect does not stay in the middle between the droplets, but rather forms a dipole with one of them. This confirms a theoretical model for the chaining. Analogies to a second order phase transition are drawn. We also find the dipole when one water droplet is suspended in a bipolar nematic drop with two boojums, i.e., surface defects at the outer boundary. Finally, we present a configuration where two droplets repel each other without a defect between them. Received 11 December 1998  相似文献   

9.
It is shown that the line group formalism proposed is suitable to describe both commensurate and incommensurate modulations. Symmetry groups of modulated crystal lattices can completely be characterized by symmetry transformations existing in real space, without any application of the formalism based on reciprocal space. As typical examples of the method elaborated, the fundamental invariance and symmetry properties of spin density functions and the soliton lattice are determined. Received: 20 July 1997 / Accepted: 25 August 1997  相似文献   

10.
The molecular dynamics (MD) simulation, based on a realistic atom-atom interaction potential, was performed on 4-n-pentyl-4'-cyanobiphenyl (5CB) in the nematic phase. The rotational viscosity coefficients (RVCs) γ i, (i = 1, 2) and the ratio of the RVCs λ = - γ 2 1 were investigated. Furthermore, static and frequency-dependent dielectric constants and ε were calculated using parameters obtained from the MD simulation. Time correlation functions were computed and used to determine the rotational diffusion coefficient, D . The RVCs and λ were evaluated using the existing statistical-mechanical approach (SMA), based on a rotational diffusion model. The SMA rests on a model in which it is assumed that the reorientation of an individual molecule is a stochastic Brownian motion in a certain potential of mean torque. According to the SMA, γ i are dependent on the orientational order and rotational diffusion coefficients. The former was characterized using: i) orientational distribution function (ODF), and ii) a set of order parameters, both derived from analyses of the MD trajectory. A reasonable agreement between the calculated and experimental values of γ i and λ was obtained. Received 22 March 2000 and Received in final form 8 October 2000  相似文献   

11.
We describe a chiral axial next nearest neighbour xy-model to account for the various subphases exhibited by antiferroelectric liquid crystals made of chiral rod-like molecules. The assumed form of the interlayer interactions is based on physical processes which are discussed. Using a discrete model, the predicted sequence of transitions is SmA-SmC-SmC-FIH-FII-FIL-SmC * A, where FI stands for a ferriphase, as seen in many compounds. The ferri and SmC phases are characterized by relatively large angles between the c-vectors of successive layers and occur only when the compounds have high optical purity. The calculated field induced structures exhibit a plateau of the apparent tilt angle at , where is the tilt angle of the molecules in the ferriphase. The conoscopic figures in the presence of a field and ellipsometric parameters in the absence of a field have also been generated, which agree extremely well with the experimental results. Recent anomalous X-ray scattering studies prove the xy-character of the configurations, though the commensurate structures that are found in the ferriphase require an extension of the model to include lock-in terms. Received 23 August 1999  相似文献   

12.
A nematic liquid crystal confined between two identical flat solid substrates, with an alternating stripe pattern of planar and homeotropic anchoring, is studied in the framework of the Frank-Oseen theory. By means of numerical minimization of the free energy functional we study the effect of the sample thickness D on the location of the phase transition between a uniform alignment, either planar or homeotropic, and a distorted nematic texture. The solvation force f due to distortions of the nematic director is also studied. It is found that f is always attractive, and for D small compared to the periodicity of the surface structure it exhibits two distinct asymptotic behaviors: f ∼ - D -1/2 or f ∼ - D -1, depending on the relation between D and the extrapolation lengths. Received 12 November 2002 Published online: 16 April 2003  相似文献   

13.
Transverse and pseudo-transverse elastic waves have been studied in several scattering geometries in order to investigate the temperature dependences of C E 66 and C E 14 over the range 300-1100 K, including the transitions near 860 K. These results complete those on C E 44 we have obtained in a previous work. All these constants display discontinuities at the lock-in transition. In the phase, the results are analysed in term of lowest order couplings between strains (e) and the order parameter (Q). The main features are described by the lowest order biquadratic e2Q2 coupling, in particular for C E 44 in a large temperature range. However, it appears that a contribution of the next coupling term arises for C E 66 below K and that the first two lowest order terms have to be taken into account even just below the lock-in transition in the case of C E 14 . The temperature dependence of Q has been deduced and it can be well described in the framework of Landau's theory. Received: 2 October 1997 / Received in final form: 3 December 1997 / Accepted: 29 January 1998  相似文献   

14.
We have theoretically investigated chevron formation in smectic C materials and the transformation of this chevron structure to a tilted layer structure as the cell is sheared. We find a series of transition temperatures at which the behaviour of the cell critically changes. As the cell is cooled from the smectic A phase past the first critical temperature there is a second order transition which forms two tilted layer states with lower energy than the smectic A bookshelf structure. Although these low energy tilted structures exist the bookshelf structure is the stable state for zero shear. However, upon further cooling this bookshelf structure becomes unstable to the formation of a chevron state. Now when the cell is sheared the chevron structure smoothly transforms into the tilted layer structure. As each further critical temperature is passed an additional multiple chevron solution is formed which although a high energy, unstable state may be observed transiently. For sufficiently low temperatures the transition from chevron to tilted layer becomes first order. This first order transition occurs as the chevron interface merges with the surface alignment region to form the tilted layer structure. Received 28 December 1998 and Received in final form 8 April 1999  相似文献   

15.
We study numerically the effect of an external magnetic or electric field on the director profiles of a nematic liquid crystal around a spherical particle. We pay particular attention to the stability of a hyperbolic hedgehog defect accompanying the particle, which transforms into a Saturn-ring defect encircling the particle under a sufficiently strong external field. We focus on the particle size dependence of the two important threshold field strengths: the “thermodynamic-transition” field strength H1 at which the hedgehog and the Saturn-ring configurations have the equal free energy, and the critical field strength H2 at which the hedgehog loses its (meta)stability. Our numerical results demonstrate that while H1 is non-monotonically dependent on the particle radius R0, H2 monotonically increases with R0 and the dependence of H2 is weak for large R0. The non-monotonic dependence of H1 on R0 can be explained by comparing the energies of the two configurations and assuming the dependence of those energies on a rescaled field. A crude argument of the energetics of a hyperbolic hedgehog defect under an external field shows that for an asymptotically large R0 the critical field strength is independent of R0, which agrees with our numerical finding.  相似文献   

16.
We have shown that cholesteryl nonanoate, a thermotropic compound which is well known to exhibit pretransitional effects at the smectic A (SmA) cholesteric (N*) transition (W.L. McMillan, Phys. Rev. A 4, 1238 (1971); 6, 936 (1972)), has in fact a TGBA phase in between. Our arguments rely on the observation of new TGBA defects, either in Robinson spherulites cooled from the N* phase or in free-standing films. The same new defects can be obtained in a well-documented TGBA phase of a tolane compound. We analyze qualitatively the TGBA defects in both geometries, in particular their relation to the disclination radius of the N* Robinson spherulites. Received 12 February 2001  相似文献   

17.
High aspect ratio clay particles dispersed in a lamellar matrix composed of a block copolymer or a lyotropic smectic are expected to orient with the lamellae. Under such conditions, the smectic medium transmits elastic forces among particles in addition to the usual forces produced by dispersion and electrostatic interactions. We compute these elastic forces and explore their influence on the thermodynamics of lamellar-clay dispersions. It turns out that the large aspect ratio of the clay implies a long range of interaction at the two particle level. Consequently, virial expansions break down at very low loadings of particles. We examine the thermodynamic behavior of assemblies of flexible and rigid clay plates in both dilute and semidilute concentration regimes. Our results should have implications for the design of nanocomposites formulated with block copolymers and lyotropic liquid crystals. Received 11 August 2000  相似文献   

18.
Light traveling through a liquid crystal with disclinations perceives a geometrical background which causes lensing effects similar to the ones predicted for cosmic objects like global monopoles and cosmic strings. In this paper we explore the effective geometry as perceived by light in such media. The comparison between both systems suggests that experiments can be done in the laboratory to simulate optical properties, like gravitational lensing, of cosmic objects.  相似文献   

19.
Systematic physical chemistry studies are in progress concerning the occurrence of incommensurate low ordered smectic phases in non-symmetric dimesogens varying molecular parameters from the standard compound KI-5. In the present study, the selected molecules possess the same spacer length and the same cholesteryl unit. By means of X-ray diffraction on orientated samples, commensurate phases, incommensurate fluid smectics and two-dimensional ones are clearly evidenced depending both on temperature and molecular parameters. So these dimesogenic compounds respond to the frustration connected to the competition between two incommensurate lengths with the formation either of an incommensurate phase or of a two-dimensional modulated phase. A new topology in a phase diagram results from this competition in a binary system composed of two homologous dimesogens. Received: 26 June 1997 / Revised: 7 October 1997 / Accepted: 29 October 1997  相似文献   

20.
We analyse the influence of adsorbed ions and the resulting surface electric field and its gradient on the anchoring properties of nematics with ionic conductivity. We take into account two physical mechanisms for the coupling of the nematic director with the surface electric field: (i) the dielectric anisotropy and (ii) the coupling of the quadrupolar component of the flexoelectric coefficient with the field gradient. It is shown that for sufficiently large fields near saturated coverage of the adsorbed ions, there can be a spontaneous curvature distortion in the cell even when the anchoring energy is infinitely strong. We also discuss the director distortion when the anchoring energy of the surface is finite. Received: 29 September 1997 / Received in final from: 10 November 1997 / Accepted: 18 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号