首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Pulsed laser excitation (354.7 nm, 10 ns pulse) of a pyridyltritolylporphyrin chromophore covalently linked to a dibenzylviologen, Bz2V2+, electron acceptor (porphyrin—viologen, PV2+) in CH3CN leads to intramolecular electron transfer quenching of the porphyrin singlet excited state within the laser pulsewidth to reduce the linked Bz2V2+ to Bz2V. Transient Bz2V can be detected directly by resonance Raman spectroscopy. The same transient features are obtained from pulsed laser excitation of a mixture of porphyrin (P) and dibenzylviologen in CH3CN where Bz2V2+ quenches the porphyrin fluorescence, establishing bimolecular excited state electron transfer quenching to yield Bz2V. Confirmation of our assignment of the transient Bz2V comes from comparison of the spectra with the resonance Raman spectrum of an authentic sample of Bz2V, and of electrochemically reduced PV2+ which has been spectroscopically confirmed to form PV. Fluorescence lifetime determinations for PV2+ and P yield a rate constant for intramolecular electron transfer, ket = 8 × 107 s−1, consistent with the ability to observe electron transfer within the laser pulsewidth  相似文献   

2.
β-ketonitriles R1COCH2CN and R1COCH(R2)CN are respectively prepared from (CH3)3SiOCOCHLiCN or R2CHLiCN by acylation reaction with mixed anhydrides RCOOCO2Et.  相似文献   

3.
The structure of the new compound [Mo(η5-C5H5)2(2-NHNC5H4)][PF6] (1) has been determined. The crystals are orthorhombic, space group Pca21 with a 20.807(1), b 8.0030(8), c 10.056(3) Å, V 1674.5 Å3, Z = 4. The structure of [Mo(η5-C5H5)2(2-ONC5H4)][PF6] (2) has also been determined. The crystals are orthorhombic, space group Pnma with a 12.727(3), b 10.174(2), c 12.918(1) Å, V 1672.8 Å3, Z = 4. The structures were solved by Patterson and difference electron density syntheses and refined by least-squares to R of 0.028 for 1287 reflections for 1 and 0.059 for 1178 reflections for 2.Although not isostructural the two cationic complexes have equivalent geometries with the normal bent bismetallocene structure. For 1 the MoN bond lengths are 2.160(8) and 2.142(9) Å, with a NMoN bond angle of 59.8(3)°, whereas for 2 MoO is 2.142(10), MoN is 2.138(11) Å, the NMoO angle is 61.2(4)°. These parameters are discussed and compared with the corresponding data for similar biscyclopentadienyl complexes of molybdenum(IV). Extended Hückel molecular orbital calculations have been carried out to throw light on the nature of the bonding between the metal and the bidentate ligand.  相似文献   

4.
14N line splittings in the spectrum of nitrobenzene (neat liquid) and metadinitrobenzene (dissolved in benzene), induced by an external electric field, have been used to determine the complete 14N quadrupole coupling tensor of these substances. Assuming that both molecules are rigid and planar, and that the quadrupole coupling tensors at the 14N nuclei are identical, the principal components in a local reference frame (x′, y′, z′) are (eQ/h)Vxx′ = ±0.34 MHz (eQ/h)Vyy′= ±1.18 Hz and (eQ/h)Vzz′ = ±1.52. The z′-direction is parallel to the CN bond and the y?direction is perpendicular to the plane of the nitrogroup. With these data the asymmetry parameter η = 0.55.  相似文献   

5.
6.
《Polyhedron》1987,6(7):1577-1585
Reaction of [ReOCl3(PPh3)2] with bromophenylhydrazine in methanol yields [ReCl(N2C6H4Br)2(PPh3)2] (1). Complex 1 reacts with arylthiolates to give mixtures of [Re(SAr)(N2C6H4Br)2(PPh3)2] (2) and [Re2(SAr)7(NNR)2]. Complexes 1 and 2 display trigonal bipyramidal geometries with the phosphine ligands occupying the axial sites. A significant feature of the structures is the nonequivalence of the rhenium-diazenido moieties, such that for 1 the ReN(1) and N(1)N(2) distances are 1.80(2) and 1.24(3) Å, while ReN(3) and N(3)N(4) are 1.73(2) and 1.32(3) Å, and for 2 the ReN distances are 1.73(1) and 1.80(2)° with corresponding NN distances of 1.32(2) and 1.25(2) Å. Reaction of (PPh4)[ReO(SPh)4] (3) with unsymmetrically disubstituted hydrazines affords complexes of the type [ReO(SPh)3(NMRR′)] (R = Me, R′ = Ph for 4). Complexes 3 and 4 display distorted square pyramidal geometries with the oxo groups apical. The significant feature of the structure of 4 is the nonlinear ReN(1)N(2) linkage, exhibiting an angle of 145.6(10)°. The angle does not appear to correlate with a significant contribution from a valence form with sp2 hybridization at the α-nitrogen. Crystal data: 1: monoclinic space group, P21/n, a = 12.216(2) Å, b = 19.098(2) Å, c = 20.257(4) Å, β = 106.20(1)°, V = 4538.3(8) Å3 to give Z = 4; structure solution and refinement based on 1905 reflections converged at R = 0.070. 2: monoclinic space group P21/n, a = 14.393(2) Å, b = 18.842(3) Å, c = 20.717(4)Å, β = 110.26(1)°, V = 5270.5(8) Å3 to give Z = 4 for D = 1.53 g cm−1; structure solution and refinement based on 4249 reflections to give R = 0.070. 3: monoclinic space group P21/n, a = 12.531(2) Å, b = 24.577(4) Å, c = 16.922(3) Å, β = 99.06(1)°, V = 5146.2(9) Å3, D = 1.36 g cm−3 for Z = 4, 2912 reflections, R = 0.050. 4: monoclinic space group p21/n, a = 16.137(2) Å, b = 9.863(2) Å, c = 16.668(2) Å, β = 111.12(1)°, V = 2474.7(6) Å3, D = 1.74 g cm−3 for Z = 4, 2940 reflections, R = 0.066.  相似文献   

7.
Metal-isotope substitution has been employed to establish the absorptions in the i.r. spectra of some metallophthalocyanines that contain MN stretching motion. The primary MN stretching bands appear at 240.7 cm−1 in 64Znpc; 284.0 cm−1 in 63Cupc; 376.0 cm−1 and 317.8 cm−1 in 58Nipc; and 308.4 cm−1 in 54Fepc. Assignment of the far-i.r. spectrum of u-oxo-(Fepc)2 places the FeN stretching band at 280.2 cm−1 and suggests a linear arrangement of the FeOFe with Fe atoms in the plane of the phthalocyanine ring.  相似文献   

8.
The microwave spectrum of trimethyl silyl isocyanate has been investigated in the region 26.5–40 GHz. The spectrum belonging to the ground vibrational state is characteristic of a symmetric top indicating that the equilibrium configuration of the SiNCO chain is either linear or very nearly so. The ground state B0 value is 1203.83 MHz which is consistent with the structure observed for SiH3NCO. The ground state transitions are accompanied by many vibrational satellites belonging to the lowest bending mode whose frequency was estimated to be 64 ± 15 cm−1. These results are consistent with electron diffraction results from which the SiNC angle is deduced to be ≈ 150°.  相似文献   

9.
M(CO)5X (M = Mn, Re; X = Cl, Br, I) reacts with DAB (1,4-diazabutadiene = R1N=C(R2)C(R2)′=NR′1) to give M(CO)3X(DAB). The 1H, 13C NMR and IR spectra indicate that the facial isomer is formed exclusively. A comparison of the 13C NMR spectra of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = glyoxalbis-t-butylimine, glyoxyalbisisopropylimine) and the related M(CO)4DAB complexes (M = Cr, Mo, W) with Fe(CO)3DAB complexes shows that the charge density on the ligands is comparable in both types of d6 metal complexes but is slightly different in the Fe-d8 complexes. The effect of the DAB substituents on the carbonyl stretching frequencies is in agreement with the A′(cis) > A″ (cis) > A′(trans) band ordering.Mn(CO)3Cl(t-BuNCHCHNt-Bu) reacts with AgBF4 under a CO atmosphere yielding [Mn(CO)4(t-BuNCHCHN-t-Bu)]BF4. The cationic complex is isoelectronic with M(CO)4(t-BuNCHCHNt-Bu) (M = Cr, Mo, W).  相似文献   

10.
Infrared spectra of creatinine (H3CNC(NH)NHCOCH2) (creat), cis-Pt(creat)2(NO2)2 and Pt(creat)4(CIO4)2 have been recorded in the range 50–4000 cm−1. The fundamental vibrations for the creatinine molecule were assigned by normal coordinate analysis in the generalized valence force field approximation. The spectrum of cis-Pt(creat)2(NO2)2 was interpreted by comparison with the creatinine vibrational modes. Additionally the Pt(creat)4(ClO4)2 infrared spectrum has been involved to help the assignment.  相似文献   

11.
《Polyhedron》1987,6(6):1439-1443
The title compound was prepared by prolonged reaction of Os2(CH3COO)4Cl2 with Hfhp (Hfhp = 6-fluoro-2-hydroxypyridine) in refluxing toluene in the presence of LiCl. The product, Os2(fhp)4Cl (1), is a result of ligand displacement with a concomitant core reduction of Os26+ to Os25+. Crystals were grown by slow diffusion of hexane into a dichloromethane solution of 1. Crystallographic data are as follows: tetragonal crystal system, space group I4mm (No. 107), a = b = 11.000(3) Å, c = 13.142(2) Å, V= 1590(1) Å3, Z = 2. The molecule possesses crystallographic 4mm symmetry, with the OsOs bonds lying along the four-fold axes. The four fhp ligands are arranged in a polar fashion around the diosmium core, blocking one axial site. The second axial position is occupied by a chloride ion. The principal distances in 1 are: Os(1)Os(2) = 2.341(1) Å, Os(1)N = 2.027(12) Å, Os(2)O = 2.014(5) Å, Os(2)Cl = 2.487(7) Å. The title compound was also investigated by several physical methods. The electrochemistry as determined by cyclic voltammetry revealed two processes: a reversible, one-electron reduction at Eox = −0.63 V in dichloromethane and an irreversible oxidation at Eox = +0.95 V in dichloromethane vs Ag-AgCl at room temperature. The electronic spectrum shows strong bands at 413 nm (ε = 4290 M−1 cm−1), 309 nm (ε = 23,560 M−1 cm−1) and at 294 nm (ε = 26,500 M−1 cm−1) as well as shoulders at 334 and 261 nm.  相似文献   

12.
《Polyhedron》1986,5(11):1821-1827
The dark purple title compound was prepared by reaction of Ru2Cl(O2CCH3)4 with molten 6-fluoro-2-hydroxypyrine (Hfhp) in quantitative yield. Crystals of composition Ru2Cl(fhp)4 were obtained by slow diffusion of hexane into a CH2Cl2 solution of the compound. The crystals belong to the tetragonal space group I4mm with the following unit-cell dimensions: a = b = 10.890(2) Å, c = 13.178(4) Å, α = β = γ = 90.0°, V = 1562.8(6) Å3, and Z = 2. The Ru2Cl(fhp)4 molecule, which has crystallographic 4mm (C4c) symmetry, contains a diruthenium(II,III) unit with a metalmetal bond order of 2.5. The four bridging fhp ligands across the Ru2 unit are oriented in one direction to form a polar molecule. The coordinatioin spheres of the two ruthenium atoms [Ru(1) and Ru(2)] are Ru(2)N(I)4 and Ru(1)Cl(1)O(1)4, respectively. The axial site on Ru(1) is blocked by four F(1) atoms. The Ru(1)Ru(2), Ru(2)Cl(1), Ru(2)O(1) and Ru(1)N(1) distances are 2.284(1), 2.427(3), 1.971(2) and 2.089(4) Å, respectively. The electronic spectrum of the compound in CH2Cl2 shows two strong bands at 552 nm (ε = 4720 M−1 cm−1) and 355 nm ε = 3770 M−1 cm−1). Cyclic voltammetry of Ru2Cl(fhp)4 in CH2Cl2 in the presence of 0.1 M [N(C2H5)4]ClO4 at 100 mV s−1 shows two quasireversible metal-centered one-electron oxication and reduction processes at +1.68 (ΔEp = 120 mV) and −0.01 V (ΔEp = 126 mV), respectively, vs an AgAgCl reference electrode.  相似文献   

13.
The electronegative ligand OTeF5 has been tested on the elements Ti, Mo, W, Ta, Re, Os and others. Compounds such as OMo(OTeF5)4, W(OTeF5)6, Ta(OTeF5)5, ReO2(OTeF5)3, OsO(OTeF5)4 are prepared. While ReVII could be stabilized with OTeF5, the highest oxidation state on Osmium is VI, and Iridium probably IV. OMo(OTeF5)4 shows a regular square pyramidal structure with apical double bonded oxygen. Chemistry on the ligand NTeF5 is based on the synthesis of H2NTeF5 and R3SiNHTeF51. Other new main group derivatives are so far Cl2NTeF5, HClNTeF5, OCN-TeF5, F3PNTeF5, Cl3NPTeF5, F2SNTeF5 and Cl2SeNTeF5, the first compound with a selenium-nitrogen double bond. In the transition metal series the compounds F4MoNTeF5 and Cl4WNTeF5 (in addition to the longer known polymeric (HgNTeF51) have been prepared. Both have discrete metal nitrogen double bonds.  相似文献   

14.
Crystals of the following compounds were grown by cathodic reduction of CsV5+O or RbV5+O metls: Cs0.3V2O5 (A), Cs2V5O13 (B), CsV2O5 (C), Rb0.4V2O5 (D), Rb0.37V2O∼4.8 (E) (a new orthorhombic compound) and Rb2−xV3+2xO8+2x (F). The crystal symmetry and cell parameters of the Rb compounds (which were known for F only) were determined, as well as those of Rb0.3V2O5, which has the structure of A. Magnetic susceptibility and ESR measurements confirm the intermediate valence in E. A, C, and E are semiconductors with activation energies in the range 0.07–0.2 eV. Cs0.3V2O5 (A), in which V4+ and V5+ do not occupy distinct crystallographic sites, has the highest electrical conductivity.  相似文献   

15.
The i.r. gas and Raman liquid spectra of CF3Si(CH3)3 and CF3Si(CD3)3 are reported and assigned for C3vsymmetry. Force constants have been calculated by a combined analysis of both isotopomers yielding ƒ (SiCF3) 2.63, ƒ (SiCH3) 3.07 and ƒ (CF) 5.70 N cm−1. The apparent weakness of the SiCF3 bond confirms the results obtained on other CF3 silanes and is discussed with respect to related molecules.  相似文献   

16.
Samples CaSO4V5+, Me3+ show mainly unassociated-vanadate emission if Me3+ is smaller than the Ca2+ ion and mainly associated-vanadate emission if Me3+ is about as large as the Ca2+ ion. Samples MgSO4V5+, Me3+ show efficient yellow emission at room temperature.  相似文献   

17.
The crystal and molecular structure of 3,4-quinoxalino-1-tellura(II)cyclopentane has been determined by X-ray diffraction at room temperature. The crystals are tetragonal, space group I41/a with a = b = 25.315(8), c = 6.010(1) Å and V = 3851.38 Å3. The density of 1.96 g cm?3 calculated on the basis of 16 molecules per unit cell is in agreement with the flotation value of 1.91 g cm?3. The structure has been refined to a conventional R value of 0.0408 using 744 independent observed reflections obtained from four-circle diffractometer measurements. The structure consists of discrete molecules TeC = 2.134 Å (av.), CN = 1.343 Å (av.) and angle CTeC = 80.7° (e.s.d. 0.5) but the intermolecular TeTe bonds (3.791 and 3.998 Å) are less than the sum of the Van der Waals' radii thus indicating the presence of secondary bonding. These short intermolecular contacts in the crystal structure are consistent with the anomalous physical properties observed.  相似文献   

18.
Starting from CF3SSCl and (CH3)3SiNSO, the compound S(N-sulfinylimine)-perfluoromethyl-disulphane, CF3SSNSO, has been prepared. The IR, pre-resonant Raman, 19F, 13C and 15N NMR, mass, and UV spectra have been obtained and interpreted.Both Raman studies at different temperatures and those using different excitation radiations reveal the existence of the molecule in one preferred conformation. From these studies a pre-resonant effect can be determined. Its extension is associated with the particular C1 conformation adopted for the molecule. The available spectroscopical data confirm not only the proposed structure for the molecule but are also consistent with a skew [SC(F3) and SN], skew (SS, NS) and cis (SN, SO) conformation regarding the SS and XNSO parts of the molecule.  相似文献   

19.
Depolarised Rayleigh scattering is sensitive to conjugated electronic effects. The proper effect of silicon bonded to an sp2 carbon atom in Me3SiPh and Me3SiCHCHΣ (Σ = H, Me, t-Bu, SiMe3) has been illustrated by comparison of the systems containing a Csp2M bond with the corresponding systems containing a Csp3M bond for M = C, Si. To be able to make this comparison it was necessary to study the additivity of the bond and group optical anisotropies in alkenes with Me, CMe3, SiMe3 groups by means of a more approximate model assuming axial symmetry for the CC bond but of more convenient and more general use than a more realistic model without axial symmetry. Contrary to the NSi (from monosilylamines), SiOC and SiOSi systems, silicon adjacent to an unsaturated system, causes an exaltation of the optical anisotropy which mainly results from increase of the longitudinal optical polarisability. This exaltation is consistent with electron delocalisation in an orbital obviously longer than the basic π orbital. Such an effect seems strengthened in (Me3Si)2NΣ if the donating ability of Σ increases, Σ = H, Me, t-Bu. For Me3SiCHCHSiMe3 and if the molecules Me3SiNHΣ11 = Me, t-Bu), (Me3Si)2NH and (Me3Si)3N are compared, a compensation is observed between the effect of the new lengthening of the π orbital and the π electronic density fall by CSi or NSi bonds.  相似文献   

20.
Nitriles react with PF5 and also with AsF5, SbF5 forming 1:1-adducts. Using C2Cl3F3 as a solvent is of advantage for this reaction. PF5·CH3CN and [N(C2H5)4]SH give [N(C2H5)4][P2S2F8] with a sulfur double bridge and hexafluorophosphate in acetonitrile [1]. In case of AsF5·CH3CN a salt with the anion [AsF5NHCSCH3]? has been isolated [2]. Following products have been confirmed in a reaction mixture of PF5·CH3CN and SH? in acetonitrile by NMR (31P and 19F): [PF6]?, [F5PSPF5]2?,
, F4PSH, F3PS, HPS2F2, [PS2F2]?, [F5PNC(SH)CH3]?, [F5PNHCSCH3]?, [F5PSH]?. With a ratio PF5·CH3CN: SH? = 2:1 the S-bridge-complexes are prefered whereas in case of a ratio 1:1 the non-bridged P-complexes are the main products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号