首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasonic treatment can improve the compatibility between a hydrophobic material and a hydrophilic polymer. The light transmittance, crystalline structure, microstructure, surface morphology, moisture barrier, and mechanical properties of a composite film with or without ultrasonication were investigated. Ultrasound increases the film’s light transmittance, resulting in a film that has good transparency. Ultrasonication did not change the crystalline structure of the polymer film, but promoted V-type complex formation. The surface of the film became smooth and homogeneous after the film-form suspension underwent ultrasonic treatment. Compared to the control film, after ultrasonication at 70% amplitude with a duration of 30 min, the average roughness and maximum roughness declined from 212 nm to 17.6 nm and from 768.7 nm to 86.5 nm, respectively. The composite film with ultrasonication exhibited better tensile and moisture barrier properties than the nonsonicated film. However, long-term and strong ultrasonication will destroy the polymer structure to some extent.  相似文献   

2.
The present study is aimed at enhanced production of a fibrinolytic enzyme from Bacillus sphaericus MTCC 3672 under ultrasonic stimulation. Various process parameters viz; irradiation at different growth phases, ultrasonication power, irradiation duration, duty cycle and multiple irradiation were studied for enhancement of fibrinolytic enzyme productivity. The optimum conditions were found as follows, irradiation of ultrasonic waves to fermentation broth at 12 h of growth phase with 25 kHz frequency, 160 W ultrasound power, 20% duty cycle for 5 min. The productivity of fibrinolytic enzyme was increased 1.82-fold from 110 to 201 U/mL compared with the non sonicated control fermentation. Drop in glucose concentration from 0.41% to 0.12% w/v in ultrasonicated batch implies that, ultrasonication increases the cell permeability, improves substrate intake and progresses metabolism of microbial cell. Microscopic images before and after ultrasonic stimulation clearly signifies the impact of duty cycle on decreasing biomass concentration. However, environmental scanning electron micrograph does not show any cell lysis at optimum ultrasonic irradiation. Offshoots of our results will contribute to fulfill the demand of enhancement of microbial therapeutic enzyme productivity, through ultrasonication stimulation.  相似文献   

3.
BaTiO3 (BT) powder, with average particle size of 1.4 microm, was synthesized by solid-state reaction. A high-intensity ultrasound irradiation (ultrasonication) was used to de-agglomerate micro-sized powder to nano-sized one. The crystal structure, crystallite size, morphology, particle size, particle size distribution, and specific surface area of the BT powder de-agglomerated for different ultrasonication times (0, 10, 60, and 180 min) were determined. It was found that the particles size of the BT powder was influenced by ultrasonic treatment, while its tetragonal structure was maintained. Therefore, ultrasonic irradiation can be proposed as an environmental-friendly, economical, and effective tool for the de-agglomeration of barium titanate powders.  相似文献   

4.
Few-layer graphene (FLG) nanofluids have received widespread interest in recent years due to their excellent thermal and optical properties. However, the low dispersion stability is one of the main bottlenecks for their commercialization. Ultrasonication is an effective method and almost an essential step to improve the stability of nanofluids. This work aimed to determine the optimal ultrasonication process for preparing stable FLG nanofluids, particularly under the constant ultrasonic energy consumption condition. For this purpose, FLG nanofluids were prepared under various amplitudes (20%–80%) and times (33.75–135 min) and evaluated by both sedimentation and optical spectrum analysis techniques. It was found that ultrasonication treatment at 30% amplitude for 90 min was sufficient for proper dispersion of FLG, and a further increase in the ultrasonication power would not benefit the stability enhancement much. However, for FLG nanofluids prepared at amplitudes higher than 30% under the constant ultrasonic energy consumption condition, their stability deteriorated seriously due to the reduced ultrasonication time, while for FLG nanofluids prepared at 20% amplitude for 135 min, they showed the higher stability, which indicates that the stability of FLG nanofluids is more sensitive to ultrasonication time than power. Therefore, a relatively longer ultrasonication time rather than a higher amplitude is recommended to prepare stable FLG nanofluids for practical applications at given ultrasonic energy consumption.  相似文献   

5.
As a new and clean extraction technology, ultrasonic extraction has been demonstrated with great potential in the preparation of modified starch. In order to increase its added value, it is necessary to modify pea starch to enlarge its application. In this study, the efficiency of combining ultrasonic with alkali in the extraction of pea starch was evaluated and compared to conventional alkali extraction. Ultrasonic-assisted alkali extraction conditions were optimized using single-factor experiments and response surface methodology. The results revealed that maximum yield of pea starch (54.43 %) was achieved using ultrasound-assisted alkali extraction under the following conditions: sodium hydroxide solution with a concentration of 0.33 %, solid/alkali solution ratio of 1:6 (w/v), ultrasonic power of 240 W, temperature of 42 °C, and extraction time of 22 min. The ultrasound-assisted alkali extraction yielded 13.72 % greater pea starch than conventional alkali extraction. On the other hand, morphological, structural, and physicochemical properties of the obtained starch isolates were evaluated. The ultrasound-assisted alkali extraction resulted in pea starch with greater amylose content, water-solubility, swelling power, and viscosity compared with conventional alkali extraction. Furthermore, ultrasonication influenced the morphological properties of pea starch granules, while the molecular structure and crystal type were not affected. Moreover, the ultrasonic-assisted extraction produced starch with a slightly greater resistant starch content. Therefore, ultrasonic-assisted extraction can be suggested as a potential method for extracting pea starch with improved functional properties.  相似文献   

6.
A novel mixed linker Metal-organic Framework, [Co(NH2IsoBDC)(bpfn)].DMF (TMU-69), with amide and amino functionalized spacers (bpfn = N,N'-(naphthalene-1,5-diyl)diisonicotinamide, NH2IsoBDCH2 = 5-Aminoisophthalic acid) was synthesized through both solvothermal and ultrasonic approaches. Applying sonochemical irradiation led to ultrafast formation of Flower-shaped nanoplates of TMU-69 within 15 min with high yield while, solvothermal method takes 3 days to form the framework. Control of size and morphology was also enhanced through applying ultrasonic irradiations. The implication of applied time and concentration of reagents on size and morphology of nano-structured TMU-69 have been optimized. Applying higher concentration of initial material with optimized 60-minute irradiation forms uniform smaller sized nanoplates of TMU-69. Also, the efficiency of TMU-69 bulk and nanoplates toward removal of pollutant dyes from water was investigated. The selective adsorption of Congo Red was observed among other dyes. Also, drastic enhancement in removal kinetic of Congo Red through using ultrasonic assisted nanoplates of TMU-69 was obtained.  相似文献   

7.
This study reports on the optimization of the conditions of extraction of d-pinitol compound from carob pods by using ultrasonication. For this purpose, the Box–Behnken design, which is a widely used form of Response Surface Methodology, was used to investigate the effects of parameters on the ultrasound-assisted extraction. Four independent variables, temperature (°C), ultrasonic power (W), dilution rate (material:water ratio) and time (min), were studied. The results showed that the highest d-pinitol concentration of 11.98 g/L was obtained with an extraction temperature of 50 °C, ultrasonic power of 207 W, a dilution rate of 1:4 and an extraction time of 120 min. It was found that the d-pinitol concentration of carob extract increased with the effect of ultrasonication during the extraction process. Therefore, ultrasound-assisted extraction could be used as an alternative to conventional hot water extraction with respect to the recovery of d-pinitol from carob pods with the advantages of lower extraction temperatures, shorter extraction time and reduced energy consumption.  相似文献   

8.
The effects of various factors, including the extraction time, temperature, solvent/material ratio, the ultrasonic intensity and duty cycle of ultrasonic irradiation on the extraction yield of all-trans-lycopene from red grapefruit by ultrasound-assisted extraction (UAE) were investigated. In comparison with conventional solvent extraction (CSE), UAE showed a pronounced greater extraction yield and reduced extraction time effectively with a peak value at 30 min. The extraction yield was significantly influenced by temperature and the optimum condition was 30 °C. The extraction yield increased with increasing of solvent/material ratio until equilibrium was arrived at the optimal ratio of 3:1 (mL/g). The extraction yield increased first and then decreased with an increase in ultrasonic intensity. The extraction yield of UAE increased with the increase of duty cycle, whereas pulsed ultrasound with proper intervals was more efficient than continuous ultrasonication. The degradation via isomerisation of all-trans-lycopene under ultrasonic treatment was also observed with the formation of 9,13′-di-cis-, 9,13-di-cis-, 15-cis-, 13-cis- and 9-cis-lycopene isomers which were tentatively identified by HPLC-PAD.  相似文献   

9.
Unlike other preparation methods of NiCoFe-layered double hydroxides, the present study provides a facile ultrasound method for synthesis of the nano-petal NiCoFe-layered double hydroxide (LDH) prepared under intensification frequency of 40 kHz and ultrasonic power of 305 W. The effect of time reaction on the morphology of NiCoFe-LDH was investigated using the Field Emission-Scanning Electron Microscopy images. The results show that time reaction can affect the morphology and it also showed that the optimal time for synthesis of nano-petal NiCoFe-LDH was 60 min. Then, the effect of nano-petal NiCoFe-LDH on oxygen evaluation reaction activity was studied and compared with NiCoFe-LDH-c nano paricles. Also, in order to study the effect of Co2+ of nano-petal NiCoFe-LDH at water oxidation, the activity of NiFe-LDH synthesized in the same conditions was investigated. The results show that nano-petal NiCoFe-LDH has low onset potential (0.46 V vs. SCE), overpotential (~227 mV) and Tafel slope (234 mV per decade) in comparison with other NiCoFe-LDH nanoparticles (synthesis using co-precipitation method and ultrasonication method within 30 and 120 min), and NiFe-LDH. Based on the obtained results, the nano-petal NiCoFe-LDH can be as a suitable electrocatalyst with good stability for water oxidation reaction in the present 0.1 M KOH media.  相似文献   

10.
Degradation of azo dye Acid Orange 7 (AO7) by zero-valent aluminum (ZVAl) in combination with ultrasonic irradiation was investigated. The preliminary studies of optimal degradation methodology were conducted with sole ultrasonic, sole ZVAl/air system, ultrasonication + ZVAl/air system (US-ZVAl). In ZVAl/air system, the degradation of AO7 could almost not be observed within 30 min. The degradation of AO7 by ZVAl/air system was obviously enhanced under ultrasound irradiation, and the enhancement is mainly attributed to that the production of hydroxyl radicals in ultrasound-ZVAl process was much higher than that in sole ultrasonic or in sole ZVAl/air system. The variables considered for the effect of degradation were the power of ultrasound, the initial concentration of AO7, as well as the initial pH value and the dosage of zero-valent aluminum. The results showed that the decolorization rate increased with the increase of power density and the dosage of ZVAl, but decreased with the increase of initial pH value and initial concentration of AO7. More than 96% of AO7 removal was achieved within 30 min under optimum operational conditions (AO7: 20 mg/L, ZVAl: 2 g/L, pH: 2.5, ultrasound: 20 kHz, 300 W). This study demonstrates that ultrasound-ZVAl process can effectively decolorize the azo dye AO7 in wastewater.  相似文献   

11.
In order to obtain noni juice with high yield and good quality, the effect of combined extraction technique of enzymatic treatment (EZ) and ultrasonication (US) on the overall quality of noni juice was investigated. Moreover, the extraction performance of the EZ-US combined extraction technique was compared with that of EZ-based extraction and the US-based extraction. Response surface methodology (RSM) was designed to optimize the parameters of ultrasonic treatment, by taking consideration of the extraction efficiency, quality parameters and bioactive ingredients of noni juice. The results indicated that combined ultrasonic and enzymatic treatment achieved a synergistic effect on promoting the quality of noni juice. The maximum juice yield of 67.95 % was obtained under ultrasonication for 10 min at 600 W after enzymatic treatment (EZU). In addition, EZU-treated juice exhibited the highest contents of total phenolic and flavonoid, which were 148.19 ± 2.53 mg gallic acid/100 mL and 47.19 ± 1.22 mg rutin/100 mL, respectively, thus contributing to better antioxidant activity. Moreover, the EZU treatment significantly reduced the particle size of noni juice, and improved its suspension stability and rheological properties. FTIR results indicated that the treatments did not bring major changes in the chemical structure and the functional groups of compounds in noni juice. Therefore, EZU treatment can be successfully applied to the extraction of noni juice with better nutritional properties and overall quality.  相似文献   

12.
In this investigation, ultrasonic-assisted soldering at 260 °C in air produced high strength and high melting point Cu connections in 60 s using Ni foam reinforced Sn composite solder. Systematically examined were the microstructure, grain morphology, and shear strength of connections made with various porosities of Ni foam composite solders. Results shown that Ni foams as strengthening phases could reinforce Sn solder effectively. The addition of Ni foam accelerated the metallurgical reaction due to great amount of liquid/solid interfaces, and refined the intermetallic compounds (IMCs) grains by ultrasonic cavitation. The joints had different IMCs by using Ni foam with different porosity. Layered (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 phases both existed in Cu/Ni60-Sn/Cu joint while only (Cu,Ni)6Sn5 IMCs grew in Cu/Ni98-Sn/Cu joint. As ultrasonic time increasing, Ni skeletons were dissolved and the IMCs were peeled off from substrates and broken into small particles. And then, the IMCs gradually dissociated into refined particles and distributed homogeneously in the whole soldering seam under cavitation effects. Herein, the Cu/Ni60-Sn/Cu joint ultrasonically soldered for 60 s exhibited the highest shear strength of 86.9 MPa, as well as a high melting point about 800 ℃ for the solder seam composed of Ni skeletons and Ni-Cu-Sn IMCs. The characterization indicated that the shearing failure mainly occurred in the interlayer of the soldering seam. The homogeneous distributed granular IMCs and Ni skeletons hindered the crack propagation and improved the strength of Cu alloy joints.  相似文献   

13.
In this research, the effect of ultrasonic irradiation power (0, 75, 150 and 200 W) and time (0, 5, 15 and 20 min) on the structure, morphology and photocatalytic activity of zinc oxide nanoparticles synthesized by sol-gel method was investigated. Crystallographic structures and the morphologies of the resultant powders were determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns showed that ZnO samples were crystallized in their pure phase. The purity of samples was increased by increasing the ultrasonic irradiation power and time. Not only did ultrasonic irradiation unify both the structure and the morphology, but also it reduced the size and prohibited particles from aggregation. The optical behavior of the samples was studied by UV–vis spectroscopy. Photocatalytic activity of particles was measured by degradation of methyl orange under radiation of ultraviolet light. Ultrasound nanoparticles represented higher degradation compared to non-ultrasound ones.  相似文献   

14.
This study evaluated the effects of high intensity ultrasonication (HIU, 100, 150, 200, and 250 W) and treatment time (0, 3, 6, 9, and 12 min) on the structure and emulsification properties of myofibrillar proteins (MPs) from Coregonus peled. These investigations were conducted using an ultrasonic generator at a frequency of 20 kHz (ultrasonic probe). Analysis of the carbonyl content and total number of sulfhydryl groups showed that HIU significantly improved the oxidative modification of MPs (P < 0.05). SDS-PAGE profiling showed significant degradation of the myosin heavy chain (P < 0.05). In addition, Fourier transformed infrared spectroscopy (FTIR) revealed that HIU altered these treated MP secondary structures, this was due to molecular unfolding and stretching, exposing interior hydrophobic groups. Particle size analysis showed that HIU treatment reduced particle sizes. Solubility, emulsification capacity, and emulsion stability were improved significantly, and each decreased with an increase in treatment time (up to 12 min), indicating aggregation with prolonged sonication. These results indicate that HIU could improve the emulsification properties of MPs from C. peled, demonstrating a promising method for fish protein processing.  相似文献   

15.
Rhenium oxide nanoparticles have been prepared using ultrasonication at 20 kHz. Samples characterization was committed via SEM-EDX, TEM, XRD, and Raman spectroscopy. Various experimental parameters were examined, including precursor/substrate amounts, ultrasonication intensity, and type of solvent used. Insights to the agglomeration of the prepared nanoparticles depending on the preparation parameters are given. As ultrasonic source we used either an ultrasonic probe by Sonics & Materials Inc. (20 kHz, 750 W net output) or a Bandelin SONOPULS HD 3200 ultrasound generator (20 kHz, 200 W net output) at intensities between 30 and 100 W/cm2. The rhenium oxide nanoparticles haven been decorated on state-of-the-art anode materials (NiO/GDC) for solid oxide fuel cells (SOFCs) in order to prepare catalytically more active anode powders. These experiments revealed that ultrasonication intensity and solvents used are able to affect final nanoparticles size distribution and morphology. At the same time, ratio of precursor and substrate compounds amounts as well as ultrasonication intensity and duration were all found to affect the decoration loading extend of nanoformations on substrate powders. The results showing the influence of the above-mentioned parameters allowed for the quantification of the effects on the loading and the preferable sites of the decoration.  相似文献   

16.
In this study, daidzein microparticles (DMP) were prepared using an improved ultrasound-assisted antisolvent precipitation method. Preliminary experiments were conducted using six single-factor experiments, and principal component analysis (PCA) was adopted to obtain the three staple elements of the ultrasonic power, solution concentration, and nozzle diameter. The response surface Box-Behnken (BBD) design was used to optimize the level of the above factors. The optimal preparation conditions of the DMP were obtained as follows: the flow rate was 4 mL/min, the concentration of the daidzein solution was 16 mg/mL, the ratio of antisolvent to solvent (liquid-to-liquid ratio) was 9, the nozzle diameter was 300 μm, the ultrasonic power was 180 W (665 W/L), and the system speed was 760 r/min. The minimum average particle size of DMP was 181 ± 2 nm. The properties of daidzein particles before and after preparation were analyzed via scanning electron microscopy, X-ray diffraction analysis, Differential scanning calorimetry and Fourier transform infrared spectroscopy, no obvious change in its chemical structure was observed, but crystallinity was reduced. Compared with daidzein powder, DMP has a higher solubility and stronger antioxidant capacity. The above results indicate that the improved method of ultrasonication combined with antisolvent can reduce the size of daidzein particles and has a great potential in practical production.  相似文献   

17.
In this study, the influence of multi-frequency ultrasound irradiation on the functional properties and structural characteristics of gluten, as well as the textural and cooking characteristics of the noodles were investigated. Results showed that the textural and cooking characteristics of noodles that contain less gluten pretreated by multi-frequency ultrasonic were ultrasonic frequency dependent. Moreover, the noodles that contain a smaller amount of sonicated gluten could achieve the textural and cooking quality of commercial noodles. There was no significant difference in the cooking and texture characteristics between commercial noodles and noodles with 12%, 11%, and 10% gluten pretreated by single-frequency (40 kHz), dual-frequency (28/40 kHz), and triple-frequency sonication (28/40/80 kHz), respectively. Furthermore, the cavitation efficiency of triple-frequency ultrasound was greater than that of dual-frequency and single-frequency. As the number of ultrasonic frequencies increased, the solubility, water holding capacity and oil holding capacity of gluten increased significantly (p < 0.05), and the particle size was reduced from 197.93 ± 5.28 nm to 110.15 ± 2.61 nm. Furthermore, compared to the control group (untreated), the UV absorption and fluorescence intensity of the gluten treated by multi-frequency ultrasonication increased. The surface hydrophobicity of gluten increased from 8159.1 ± 195.87 (untreated) to 11621.5 ± 379.72 (28/40/80 kHz). Raman spectroscopy showed that the α-helix content of all sonicated gluten protein samples decreased after sonication, while the β-sheet and β-turn content increased, and tryptophan and tyrosine residues were exposed. Through scanning electron microscope (SEM) analysis, the gluten protein network structure after ultrasonic treatment was loose, and the pore size of the gluten protein network increased from about 10 μm (untreated) to about 26 μm (28/40/80 kHz). This work elucidated the effect of ultrasonic frequency on the performance of gluten, indicating that with increasing frequency combination increases, the ultrasound effect became more pronounced and protein unfolding increased, thereby impacting the functional properties and the quality of the final product. This study provided a theoretical basis for the application of multi-frequency ultrasound technology in the modification of gluten protein and noodle processing.  相似文献   

18.
Recently, integrated and sustainable methods for extracting active substances from plant materials using green solvents, i.e., ionic liquids, have gained increasing attention. Ionic liquids show superiority over conventional organic solvents; however, they also exhibit negative factors and problems, such as high viscosity, poor water intermiscibility, intensive foaming and poor affinity for fat-soluble substances. The proposed method utilizes ultrasonic-enhanced surface-active ionic liquid-based extraction and defoaming (UESILED) to improve the extraction efficiency of ionic liquids. Single-factor experiments and a Box-Behnken design (BBD) were utilized to optimize the extraction procedure. The optimal conditions were as follows: extraction solvent, [C10MIM]Br; ultrasonic treatment time, 28 min; ultrasonic irradiation power, 437 W; liquid–solid ratio, 10 mL/g; particle size, 60 ~ 80 mesh; ultrasonication temperature, 313 K; and [C10MIM]Br solution concentration, 0.5 mol/L. In comparison with those of other reference extraction methods, the proposed method exhibited higher yields of two furocoumarins and operational feasibility. Moreover, the mechanism of UESILED was elaborated in terms of accelerating infiltration, dissolution and defoaming. The feasible and efficient ultrasonic-enhanced ionic liquid-based extraction established in this study strongly contributes to overcoming the limitations of ionic liquid solvents. The present research indicates that this improved process will be beneficial for the extraction of other fat-soluble substances and provides promising concepts and experimental data.  相似文献   

19.
Cavitation intensity is affected by ultrasonic intensity (UI) and is a key parameter to describe experimental results during ultrasonic treatment. The relationship between the UI and physicochemical properties of Chinese fir was investigated. In this study, four frequencies (25, 28, 40, and 59 kHz) were used at the same intensity of 240 W and the same duration of 35 min. The UI during the ultrasonic treatment was determined, and the chemical components were determined. The chemical structure, crystallinity, morphology, and extractives of wood were respectively analyzed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and gas chromatography-mass spectrometry (GC–MS). The results showed that higher crystallinity was associated with a larger integrated area under the curve of the ultrasonic intensity (UIA). The largest UIA was observed at 25 kHz, followed by those at 40, 59, and 28 kHz. The relative content of hemicellulose was strongly affected by the ultrasonic treatment. No chemical reactions were observed in the wood, whereas the ultrasonic treatment affected the torus of the bordered pits and facilitated the migration of extractives. In general, the higher the UIA, the stronger the effect of the cavitation was. The most significant changes in the physicochemical properties were observed at 25 kHz. The instantaneous ultrasonic intensity (IUI) changed over time, and the UIA was closely associated with changes in the physicochemical properties of the wood. The results of this study demonstrate that UI has a significant influence on the physicochemical properties of wood.  相似文献   

20.
This article reports on the ultrasound-assisted acid hydrolysis for the synthesis and evaluation of starch nanoparticles (SNP) as nanofillers to improve the physical, mechanical, thermal, and barrier properties of polyurethane (PU) films. During the ultrasonic irradiation, dropwise addition of 0.25 mol L-1 H2SO4 was carried out to the starch dispersion for the preparation of SNPs. The synthesized SNPs were blended uniformly within the PU matrix using ultrasonic irradiation (20 kHz, 220 W pulse mode). The temperature was kept constant during the synthesis (4 °C). The nanocomposite coating films were made with a regulated thickness using the casting method. The effect of SNP content (wt%) in nanocomposite coating films on various properties such as morphology, water vapour permeability (WVP), glass transition temperature (Tg), microbial barrier, and mechanical properties was studied. The addition of SNP to the PU matrix increased the roughness of the surface, and Tg by 7 °C, lowering WVP by 60% compared to the PU film without the addition of SNP. As the SNP concentration was increased, the opacity of the film increased. The reinforcement of the SNP in the PU matrix enhanced the microbial barrier of the film by 99.9%, with the optimal content of SNP being 5%. Improvement in the toughness and barrier properties was observed with an increase in the SNP content of the film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号