首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasound radiation rods play a key role in introducing ultrasonic to the grain refinement of large-size cast aluminum ingots (with diameter over 800 mm), but the severe cavitation corrosion of radiation rods limit the wide application of ultrasonic in the metallurgy field. In this paper, the cavitation erosion of Ti alloy radiation rod (TARR) in the semi-continuous direct-chill casting of 7050 Al alloy was investigated using a 20 kHz ultrasonic vibrator. The macro/micro characterization of Ti alloy was performed using an optical digital microscopy and a scanning electron microscopy, respectively. The results indicated that the cavitation erosion and the chemical reaction play different roles throughout different corrosion periods. Meanwhile, the relationship between mass-loss and time during cavitation erosion was measured and analyzed. According to the rate of mass-loss to time, the whole cavitation erosion process was divided into four individual periods and the mechanism in each period was studied accordingly.  相似文献   

2.
The influences of Ce, Sm and Yb on cavitation erosion of NAB alloy in 3.5% NaCl solution are evaluated using mass loss, SEM, 3D morphology and Tafel plot, respectively. The results show that the addition of Ce or Sm or Yb enhances the mechanical property of NAB alloy, and the sizes of κ and κ phases within NAB alloy decrease with adding Ce or Sm or Yb, resulting in the prevention of the propagation of the cracks caused by cavitation erosion initially originated at the phase boundaries between α and κ phases, and finally the cavitation erosion damage significantly decreases with adding Ce or Sm or Yb. The corrosion of NAB alloy in 3.5% NaCl solution can promote the cavitation erosion of NAB alloy, while the corrosion resistance of NAB alloy increases with the addition of Ce or Sm or Yb, and then the cavitation erosion resistance is accordingly improved with the addition of rare earth element.  相似文献   

3.
The high-velocity oxygen-fuel (HVOF) spraying process was used to fabricate conventional WC–10Co–4Cr coatings and FeCrSiBMn amorphous/nanocrystalline coatings. The synergistic effect of cavitation erosion and corrosion of both coatings was investigated. The results showed that the WC–10Co–4Cr coating had better cavitation erosion–corrosion resistance than the FeCrSiBMn coating in 3.5 wt.% NaCl solution. After eroded for 30 h, the volume loss rate of the WC–10Co–4Cr coating was about 2/5 that of the FeCrSiBMn coating. In the total cumulative volume loss rate under cavitation erosion–corrosion condition, the pure cavitation erosion played a key role for both coatings, and the total contribution of pure corrosion and erosion-induced corrosion of the WC–10Co–4Cr coating was larger than that of the FeCrSiBMn coating. Mechanical effect was the main factor for cavitation erosion–corrosion behavior of both coatings.  相似文献   

4.
The influences of micro-particles on ultrasonic cavitation erosion of Ti6Al4V alloy in 0.1 M H2SO4 solution were investigated using mass loss weight, scanning electron microscopy (SEM) and white light interferometer. Mass loss results revealed that the cavitation erosion damage obviously decreased with increasing particle size and mass concentration. Open circuit potential recorded during cavitation erosion shifted to positive direction with the decreased mass loss. Meanwhile, the mass loss sharply decreased with applying a positive potential during the entire ultrasonic cavitation erosion, and the relationship between the open circuit potential and the cavitation erosion resistance was discussed.  相似文献   

5.
Liquid lead-bismuth eutectic alloy (LBE) is applied in the Accelerator Driven transmutation System (ADS) as the high-power spallation neutron targets and coolant. A 19.2 kHz ultrasonic device was deployed in liquid LBE at 550 °C to induce short and long period cavitation erosion damage on the surface of weld joint, SEM and Atomic force microscopy (AFM) were used to map out the surface properties, and Energy Dispersive Spectrometer (EDS) was applied to the qualitative and quantitative analysis of elements in the micro region of the surface. The erosion mechanism for how the cavitation erosion evolved by studying the element changes, their morphology evolution, the surface hardness and the roughness evolution, was proposed. The results showed that the pits, caters and cracks appeared gradually on the erode surface after a period of cavitation. The surface roughness increased along with exposure time. Work hardening by the bubbles impact in the incubation stage strengthened the cavitation resistance efficiently. The dissolution and oxidation corrosion and cavitation erosion that simultaneously happened in liquid LBE accelerated corrosion-erosion process, and these two processes combined to cause more serious damage on the material surface. Contrast to the performance of weld metal, base metal exhibited a much better cavitation resistance.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(4):1544-1548
Ultrasonic cavitation erosion experiments were performed on Ti–6Al–4V alloys samples in annealed, nitrided and nitrided and subsequently heat treated state. The protective oxide layer formed as a result of annealing and heat treatment after nitriding is eliminated after less than 30 min cavitation time, while the nitride layer lasts up to 90 min cavitation time. Once the protective layer is removed, the cavitation process develops by grain boundary erosion, leading to the expulsion of grains from the surface. The gas nitrided Ti–6Al–4V alloy, forming a TixN surface layer, proved to be a better solution to improve the cavitation erosion resistance, compared to the annealed and nitrided and heat treated state, respectively. The analysis of the mean depth of erosion rate at 165 min cavitation time showed an improvement of the cavitation erosion resistance of the nitrided samples of up to 77% higher compared to the one of the annealed samples.  相似文献   

7.
Two kinds of Ti-alloys, i.e., TiMo and TiNb alloys are manufactured in this paper, and their ultrasonic cavitation erosion behaviors in 0.1 M H2SO4 solution are evaluated by the mean depth erosion (MDE), SEM and white light photograph. The results show that MDE of TiMo and TiNb alloys obviously increase with increasing the cavitation erosion time, however, they evidently decrease with the increment of Mo or Nb content at each fixed cavitation erosion time, and even some large blank areas (uneroded areas) still exist on the sample surface after ultrasonic cavitation erosion for 2 h in the case of Ti10Mo and Ti20Nb samples, implying the enhanced anti-cavitation erosion property of Ti-alloy by adding Mo or Nb element. The MDE of Ti10Mo or Ti20Nb sample is lower than that of TC4 sample in the case of each cavitation erosion time, indicating the better cavitation erosion resistance of of Ti10Mo or Ti20Nb sample. The influences of Mo and Nb on the passivity of TiMo and TiNb alloys during the ultrasonic cavitation erosion are detected by potentiodynamic curves. The results display that Ti, TC4, TixMo (x = 1, 5, 10) and TixNb (x = 5, 10, 20) samples are all almost in the passive state within the potential region from 0VSCE to 1.5VSCE during ultrasonic cavitation erosion, and the passive current density evidently decreases with increasing Mo or Nb content, indicating the enhanced passive characteristic by adding Mo or Nb alloys during the ultrasonic cavitation erosion.  相似文献   

8.
To alleviate the cavitation damage of metallic engineering components in hydrodynamic systems operating in marine environments, a NbN nanoceramic coating was synthesized on to a Ti-6Al-4V substrate via a double cathode glow discharge technique. The microstructure of the coating consisted of a ~13 μm thick deposition layer of a hexagonal δ′-NbN phase and a diffusion layer ~2 μm in thickness composed of face-centered cubic (fcc) B1-NaCl–structured (Ti,Nb)N. The NbN coating not only exhibited higher values of H/E and H2/E than those measured from NbN coatings deposited by other techniques, but also possessed good adhesion to the substrate. The cavitation erosion resistance of the NbN coating in a 3.5 wt% NaCl solution was investigated using an ultrasonic cavitation-induced apparatus combined with a range of electrochemical test methods. Potentiodynamic polarization measurements demonstrated that the NbN coated specimens demonstrated both a higher corrosion potential (Ecorr) and lower corrosion current density (icorr) than the uncoated substrate. Mott-Schottky analysis, combined with the point defect model (PDM), revealed that, for a given cavitation time, the donor density (ND) of the passive film on the NbN coating was reduced by 1 ~ 2 orders of magnitude relative to the uncoated Ti-6Al-4V, and the diffusivity of the point defects (D0) in the passive film grown on the NbN coating was nearly one order of magnitude lower than that on the uncoated substrate. In order to better understand the experimental observations obtained from Mott-Schottky analysis and double-charge layer capacitance measurements, first-principles density-functional theory was employed to calculate the energy of vacancy formation and the adsorption energy for chloride ions for the passive films present on both the NbN coating and bare Ti-6Al-4V.  相似文献   

9.
Wear processes are always present in components exposed to different work situations. Hydraulic turbines in electric power generation and ship propellers are good examples of components subject to wear and corrosion. One way to protect these components, for example, is the deposition of coatings by thermal spray processes. Indeed, there are several wear or corrosion mechanisms acting simultaneously, and the validation of the mechanisms separately, is not the best way to select the better material. When materials have passivation as protective mechanism against corrosion, the mass loss due erosion can affect the materials selection. This paper study the combined effect of the corrosion on the cavitation mass loss, as well as, the cavitation mass loss influence on the corrosion properties of a chromium carbide Cr3C2-25NiCr coating. Despite of the modification of the erosion mechanism on the cavitated samples under 3,5% NaCl solution, the volume loss did not show any significant alteration. Cavitation mass loss increase the corrosion process, reducing significantly the corrosion potential and raising the corrosion current. It was observed that the cavitation of the Cr3C2-25NiCr HVOF coating influences much more the corrosion kinetics, than the corrosion affects the cavitation resistance.  相似文献   

10.
The aim of this study is to investigate the mechanism of the erosion process induced by 1.2 MHz pulsed high-intensity focused ultrasound (pulsed HIFU). By using Sonochemiluminescence (SCL) photograph, the initiation and maintenance of active cavitation were observed. In order to understand the role of both inertial cavitation and stable cavitation, a passive cavitation detection (PCD) transducer was used. Since the exposure variables of HIFU are important in the controlled ultrasound tissue erosion, the influence of pulse length (PL) and duty cycle (DC, Ton:Toff) has been examined. The results of tissue hole, SCL observation and acoustic detection revealed that the erosion was highly efficient for shorter PL. For higher DCs, the area of SCL increased with increasing PL. For lower DCs, the area of SCL increased with increasing PL from 10 to 20 μs and then kept constant. For all PLs, the intensity of SCL decreased with lower DC. For all DCs, the intensity of SCL per unit area (the ratio of SCL intensity to SCL area) also decreased with increasing PL from 10 to 80 μs, which suggested that the higher the intensity of SCL is, the higher the efficiency of tissue erosion is. At DC of 1:10, the position of the maximum pixel in SCL pictures was distant from the tissue–fluid interface with the increasing PL because of shielding effect. By the comparison of inertial cavitation dose (ICD) and the stable cavitation dose (SCD), the mechanisms associated with inertial cavitation are very likely to be the key factor of the erosion process.  相似文献   

11.
The influence of the applied passive potential on the ultrasonic cavitation erosion of Ti specimen in 1 M HCl solution was investigated by mass loss experiment, scanning electron microscopy (SEM), electrochemical impedance spectra (EIS) and Mott–Schottky plot. The results showed that Ti was in the passive state within the potential region from −0.3 VSCE to 1.5 VSCE under ultrasonic cavitation erosion. The applied passive potential can obviously decrease the mass loss of Ti caused by ultrasonic cavitation erosion in 1 M HCl solution. The resistance of the passive film increased, the flat band potential moved to positive direction, and the donor density of the passive film decreased with increasing the passive potential. Finally, a physical model was provided to explain the experimental results based on energy band and semi-conductive theories.  相似文献   

12.
The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC–10Co–4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide–binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products.  相似文献   

13.
Electrodeposited Ni–W alloy assisted by high-intensity ultrasound was evaluated considering the nominal power effect on the anticorrosive property. Temperature profiles demonstrated that using a nominal power of 400 W, the electrolytic bath at 30 °C reached values of 39 ± 1 °C. The maximum acoustic power corresponded to 6.7% of the nominal power value at 400 W. Increasing the nominal power from 0 to 400 W; the Ni content decreased from 85.3 to 75.2 wt%, and the W content increased from 15.1 to 25.1 wt%. The deposited coating at 200 W and 300 W had a smooth, homogeneous, and uniform surface. At 400 W, the acoustic cavitation promoted erosion, affecting the coating surface. X-ray diffraction analysis indicated that the nominal power of 200 W promoted electrodeposition of the Ni17W3 structure with the plane (1 1 1) as a preferred orientation. The crystallite size decreased for the planes (1 1 1) and (2 0 0) when increased nominal power from 100 to 200 W. The optimum condition for the improved corrosion resistance occurred with the nominal power of 200 W, providing a polarization resistance of 23.42 kΩ cm2.  相似文献   

14.
Cavitation erosion and corrosion of structural materials are serious concerns for marine and offshore industries. Durability and performance of marine components are severely impaired due to degradation from erosion and corrosion. Utilization of advanced structural materials can play a vital role in limiting such degradation. High entropy alloys (HEAs) are a relatively new class of advanced structural materials with exceptional properties. In the present work, we report on the cavitation erosion behavior of Al0.1CoCrFeNi HEA in two different media: distilled water with and without 3.5 wt% NaCl. For comparison, conventionally used stainless steel SS316L was also evaluated in identical test conditions. Despite lower hardness and yield strength, the HEA showed significantly longer incubation period and lower erosion-corrosion rate (nearly 1/4th) compared to SS316L steel. Enhanced erosion resistance of HEA was attributed to its high work-hardening behavior and stable passivation film on the surface. The Al0.1CoCrFeNi HEA showed lower corrosion current density, high pitting resistance and protection potential compared to SS316L steel. Further, HEA showed no evidence of intergranular corrosion likely due to the absence of secondary precipitates. Although, the degradation mechanisms (formation of pits and fatigue cracks) were similar for both the materials, the damage severity was found to be much higher for SS316L steel compared to HEA.  相似文献   

15.
In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.  相似文献   

16.
The Al-Mn alloy coatings were electrodeposited on AZ31B Mg alloy in AlCl3-NaCl-KCl-MnCl2 molten salts at 170 °C aiming to improve the corrosion resistance. However, in order to prevent AZ31B Mg alloy from corrosion during electrodeposition in molten salts and to ensure excellent adhesion of coatings to the substrate, AZ31B Mg alloy should be pre-plated with a thin zinc layer as intermediate layer. Then the microstructure, composition and phase constituents of the coatings were investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), and X-ray diffraction (XRD). It was indicated that, by adjusting the MnCl2 content in the molten salts from 0.5 wt% to 2 wt%, the Mn content in the alloy coating was increased and the phase constituents were changed from f.c.c Al-Mn solid solution to amorphous phase. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization measurements in 3.5% NaCl solution. It was confirmed that the Al-Mn alloy coatings exhibited good corrosion resistance with a chear passive region and significantly reduced corrosion current density at anodic potentiodynamic polarization. The corrosion resistance of the alloy coatings was also related with the microstructure and Mn content of the coatings.  相似文献   

17.
Cavitation erosion at the high hydrostatic pressure causes the equipment to operate abnormally for the huge economic losses. Few methods can quantitatively evaluate the cavitation erosion intensity. In order to solve this problem, the cavitation erosion on a copper plate was carried out in a spherical cavity focused transducer system at the hydrostatic pressure of 3, 6, and 10 MPa. Meanwhile, the corresponding cavitation threshold, the initial bubble radius, and the microjet velocity in the ultrasonic field are theoretically analyzed to determine the dimension and velocity of microjet based on the following hypotheses: (1) the influence of the coalescence on the bubble collapse is ignored; (2) the dimension of the microjet is equal to the largest bubble size without the influence of gravity and buoyancy. Using the Westervelt equation for the nonlinear wave propagation and the Johnson-Cook material constitutive model for the high strain rate, a microjet impact model of the multi-bubble cavitation was constructed. In addition, through the analogy with the indentation test, an inversion model was proposed to calculate the microjet velocity and the cavitation erosion intensity. The microjet geometric model was constructed from the dimension and velocity of the microjet. The continuous microjet impact was proposed according to the equivalent impact momentum and solved by the finite element method. The relative errors of the pit depth are 4.02%, 3.34%, and 1.84% at the hydrostatic pressure of 3, 6, and 10 MPa, respectively, and the relative error in the evolution of pit morphology is 7.33% at 10 MPa, which verified the reliability of the proposed models. Experimental and simulation results show that the higher the hydrostatic pressure, the greater the pit depth, pit diameter, the pit-to-microjet diameter ratio, and the cavitation erosion intensity, but the smaller the pit diameter-to-depth ratio. The cavitation erosion intensity becomes significant with the ongoing ultrasonic exposure. In addition, a comparison of the cavitation pit morphology in the microjet pulsed and continuous impact modes shows that the continuous impact mode is effective without the elastic deformation caused by the residual stress. Using the cavitation pit morphology at the different hydrostatic pressures, the microjet velocity can be estimated successfully and accurately in a certain range, whose corresponding errors at the lower and upper limit are 5.98% and 0.11% at 3 MPa, 6.62% and 9.14% at 6 MPa, 6.54% and 5.42% at 10 MPa, respectively. Our proposed models are valid only when the cavitation pit diameter-to-depth ratio is close to 1. Altogether, the cavitation erosion induced by multi-bubble collapses in the focal region of a focused transducer could be evaluated both experimentally and numerically. Using the cavitation pit morphology and the inversion model, the microjet velocity in a certain range could be estimated successfully with satisfactory accuracy.  相似文献   

18.
Nd-YAG laser surface treatment was conducted on 7075-T651 aluminum alloy with the aim of improving the stress corrosion cracking resistance of the alloy. Laser surface treatment was performed under two different gas environments, air and nitrogen. After the laser treatment, coarse constituent particles were removed and fine cellular/dendritic structures had formed. In addition, for the N2-treated specimen, an AlN phase was detected. The results of the stress corrosion test showed that after 30 days of immersion, the untreated specimen had been severely attacked by corrosion, with intergranular cracks having formed along the planar grain boundaries of the specimen. For the air-treated specimen, some relatively long stress corrosion cracks and a small number of relatively large corrosion pits were found. The cracks mainly followed the interdendritic boundaries; the fusion boundary was found to be acting as an arrestor to corrosion attacks. In contrast, only few short stress corrosion cracks appeared in the N2-treated specimen, indicating an improvement in corrosion initiation resistance. The superior corrosion resistance was attributed to the formation of the AlN phase in the surface of the laser-melted layer, which is an electrical insulator. The electrochemical impedance measurements taken during the stress corrosion test showed that the film resistance of the laser-treated specimens was always higher than that of the untreated specimen, with the N2-treated specimen showing the highest resistance.  相似文献   

19.
Cavitation, chemical effect, and mechanical effect thresholds were investigated in wide frequency ranges from 22 to 4880 kHz. Each threshold was measured in terms of sound pressure at fundamental frequency. Broadband noise emitted from acoustic cavitation bubbles was detected by a hydrophone to determine the cavitation threshold. Potassium iodide oxidation caused by acoustic cavitation was used to quantify the chemical effect threshold. The ultrasonic erosion of aluminum foil was conducted to estimate the mechanical effect threshold. The cavitation, chemical effect, and mechanical effect thresholds increased with increasing frequency. The chemical effect threshold was close to the cavitation threshold for all frequencies. At low frequency below 98 kHz, the mechanical effect threshold was nearly equal to the cavitation threshold. However, the mechanical effect threshold was greatly higher than the cavitation threshold at high frequency. In addition, the thresholds of the second harmonic and the first ultraharmonic signals were measured to detect bubble occurrence. The threshold of the second harmonic approximated to the cavitation threshold below 1000 kHz. On the other hand, the threshold of the first ultraharmonic was higher than the cavitation threshold below 98 kHz and near to the cavitation threshold at high frequency.  相似文献   

20.
As 7075 aluminum alloy is widely used in a humid environment, in order to enhance its abrasion resistance and electrochemical corrosion resistance, the paper studied the effect of laser shock peening on abrasion resistance in artificial seawater and corrosion resistance in 3.5% NaCl solution of 7075 aluminum alloy. Result shows that when specimens were treated once and twice with 7.17 GW/cm2 the abrasion loss would be reduced by 43.75% and 46.09% compare to untreated respectively, and the corrosion rate of 7075 aluminum alloy could be reduced as much as 50.32% by LSP treatment with 7.17 GW/cm2. What’s more, the effects on the microhardness, microstructure and residual stress with different LSP impacts and power density were investigated to find out strengthening mechanism of laser shock peening, which were observed and measured by microhardness tester, optical microscope and X-ray diffraction (XRD) residual stress tester. In the entire laboratory tests, it is considered that LSP is a practical option to improve abrasion resistance in seawater and corrosion resistance of 7075 aluminum alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号