首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the ultrasound-assisted solvent-mediated polymorphic transformation of theophylline was explored in detail. The induction time and reconstruction time were significantly decreased by ultrasound, thereby decreasing the total transformation time and promoting the transformation process. The ultrasound-promoted efficiency of nucleation was different in three alcoholic solvents, which was difficult to explain by traditional kinetic effects. To resolve the above confusion, binding energies calculated by Density Functional Theory were applied to explore the relationship between the ultrasound-promoted efficiency of nucleation and solute–solvent interactions. Then, a possible molecular self-assembly nucleation pathway affected by ultrasound was proposed: the ultrasound could change and magnify the crucial effect of the specific sites of solute–solvent interactions in the nucleation process. Finally, the transformation kinetics with different effective ultrasonic energies was quantitatively analyzed by Avrami-Erofeev model, indicating that the dissolution element in the rate-limiting step was gradually eliminated by higher ultrasonic energy. Fortunately, the elusive crystal form V could be easily obtained by the ultrasound-assisted polymorph transformation. This proved to be a robust method to produce high purity form V of theophylline. The outcome of this study demonstrated that the proper ultrasonic irradiation had the potential to produce specific polymorphs selectively.  相似文献   

2.
In order to clarify the mechanism of nucleation of ice induced by ultrasound, ultrasonic waves have been applied to supercooled pure water and degassed water, respectively. For each experiment, water sample is cooled at a constant cooling rate of 0.15 °C/min and the ultrasonic waves are applied from the water temperature of 0 °C until the water in a sample vessel nucleates. This nucleation temperature is measured. The use of ultrasound increased the nucleation temperature of both degassed water and pure water. However, the undercooling temperature for pure water to nucleate is less than that of degassed water. It is concluded that cavitation and fluctuations of density, energy and temperature induced by ultrasound are factors that affect the nucleation of water. Cavitation is a major factor for sonocrystallisation of ice.  相似文献   

3.
The objective of this research was to modify the crystal shape and size of poorly water-soluble drug ropivacaine, and to reveal the effects of polymeric additive and ultrasound on crystal nucleation and growth. Ropivacaine often grow as needle-like crystals extended along the a-axis and the shape was hardly controllable by altering solvent types and operating conditions for the crystallization process. We found that ropivacaine crystallized as block-like crystals when polyvinylpyrrolidone (PVP) was used. The control over crystal morphology by the additive was related to crystallization temperature, solute concentration, additive concentration, and molecular weight. SEM and AFM analyses were performed providing insights into crystal growth pattern and cavities on the surface induced by the polymeric additive. In ultrasound-assisted crystallization, the impacts of ultrasonic time, ultrasonic power, and additive concentration were investigated. The particles precipitated at extended ultrasonic time exhibited plate-like crystals with shorter aspect ratio. Combined use of polymeric additive and ultrasound led to rice-shaped crystals, which the average particle size was further decreased. The induction time measurement and single crystal growth experiments were carried out. The results suggested that PVP worked as strong nucleation and growth inhibitor. Molecular dynamics simulation was performed to explore the action mechanism of the polymer. The interaction energies between PVP and crystal faces were calculated, and mobility of the additive with different chain length in crystal-solution system was evaluated by mean square displacement. Based on the study, a possible mechanism for the morphological evolution of ropivacaine crystals assisted by PVP and ultrasound was proposed.  相似文献   

4.
In this paper, the crystallization of L-glutamic acid with application of ultrasound was explored in detail, including the process of nucleation, polymorphic control and polymorphic transformation. The induction time and metastable zone widths (MSZWs) were measured with and without ultrasound during the nucleation process. The induction time and MSZWs were decreased by ultrasound and the induction time was further decreased by higher ultrasonic power. The calculated nucleation parameters (such as interfacial energy, critical nucleus size and critical Gibbs energy) showed an obvious decrease in the presence of ultrasound, indicating that the nucleation was enhanced with application of ultrasound. By adjusting the ultrasonic power in the quench cooling process, the difference in nucleation temperatures would determine the distribution of polymorphs. In further, the polymorphic transformation was investigated quantitatively, and to the best of our knowledge, it was the first time to study the transformation kinetics with ultrasound using Avrami-Erofeev model. In the transformation process, the crystallization mechanism of the stable form was modified by ultrasound. The ultrasound eliminated the nucleation element in the rate-limiting step and facilitated the crystal growth of stable form. Thus, the ultrasound has a profound influence on L-glutamic acid crystallization.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(6):1908-1915
The application of ultrasound to crystallization (i.e., sonocrystallization) can dramatically affect the properties of the crystalline products. Sonocrystallization induces rapid nucleation that generally yields smaller crystals of a more narrow size distribution compared to quiescent crystallizations. The mechanism by which ultrasound induces nucleation remains unclear although reports show the potential contributions of shockwaves and increases in heterogeneous nucleation. In addition, the fragmentation of molecular crystals during ultrasonic irradiation is an emerging aspect of sonocrystallization and nucleation. Decoupling experiments were performed to confirm that interactions between shockwaves and crystals are the main contributors to crystal breakage. In this review, we build upon previous studies and emphasize the effects of ultrasound on the crystallization of organic molecules. Recent work on the applications of sonocrystallized materials in pharmaceutics and materials science are also discussed.  相似文献   

6.
Applying a strong static electric field to supersaturated aqueous glycine solutions resulted in the nucleation of the gamma polymorph. This is the first report of a strong dc field inducing the nucleation of a neutral solute in a supersaturated solution. We attribute this effect to the electric-field-induced orientation of the highly polar glycine molecules in large preexisting solute clusters, helping them organize into a crystalline structure. This result also lends further support to our proposed optical-Kerr mechanism for nonphotochemical laser-induced nucleation.  相似文献   

7.
In this study we have investigated diamond nucleation on Si substrates by ultrasonic seeding with different liquid solutions of Ultradispersed Detonation Diamond (UDD) powder in a mixture of metal nano- or microparticles (Ni, Co, Y). The influence of different solutions on nucleation efficiency was investigated. For highlighting nucleation centers and better evaluation of the nucleation process the nucleated samples were moved into a Microwave Plasma Enhanced Chemical Vapor Deposition (MW CVD) reactor and a ”short-time” (10 min), then followed by a ”long-time” (+1 hour), diamond deposition was performed. The morphology of samples was characterized by Scanning Electron Microscopy (SEM) and the chemical composition of grown diamond layer was investigated by Raman Spectroscopy. From the measurements we found out that microsized metal particles positively influenced nucleation and the uniformity of the deposited diamond thin film. The lowest surface roughness was achieved in the case of nanodiamond powder mixed with Co and Y metal powder. The influence of Ni, Co and Y to the nucleation and early growth stage are discussed.  相似文献   

8.
A study on the primary and secondary nucleation of ice by power ultrasound   总被引:10,自引:0,他引:10  
Chow R  Blindt R  Chivers R  Povey M 《Ultrasonics》2005,43(4):227-230
Several different investigations have been carried out to study the primary and secondary nucleation of ice by sonocrystallisation. Firstly, the primary nucleation of discrete ice crystals in a supercooled sucrose solution has been observed. For increasing concentrations of sucrose solutions from 0 to 45 wt%, the nucleation temperature consistently occurs at a higher nucleation temperature in the presence of ultrasound. The nucleation temperature also increases as the power output and duty cycle of a commercial ultrasonic horn are increased. Snap shot images of the bubble clouds obtained from the ultrasonic horn also show that the number of bubbles appears to increase as the ultrasonic output is increased. This suggests that the nucleation of ice is related to the power output and number of cavitation bubbles. The effect of a single bubble on the sonocrystallisation of ice is discussed. High-speed movies (1120 fps) have shown that the crystallisation appears to occur in the immediate vicinity of the single bubble. In most cases, many crystals are observed and it is not known whether a single ice crystal is being fragmented by the bubble or whether many crystals are being initiated. The bubble appears to undergo a dancing regime, frequently splitting and rejoining and also emitting some small microbubbles. A study on the secondary nucleation of ice in sucrose solutions has been carried out using a unique ultrasonic cold stage device. Images taken using a microscope system show that the pre-existing ice dendrite crystals can be broken up into smaller fragments by an ultrasonic field. Cavitation bubbles appear to be important during the fragmentation process, possibly melting any ice crystals in their path. Flow patterns around cavitation bubbles have also been observed, and these may be responsible for the fragmentation of ice crystals.  相似文献   

9.
Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process.  相似文献   

10.
本文阐述了超声波用于树脂再生的最新技术,超声脱附以及它的原理一超声场聚能效应。该方法和传统的化学方法相比较:不仅具有操作简单,化学药品消耗少,排污量少等优点。而且还能增加树脂的脱附速率,减少脱附时间,增加解吸平衡物的浓度。本文综述了在这一领域的最近研究进展,各种不同频率和功率对树脂再生效果的影响,为该领域的研究工作提供参考。  相似文献   

11.
In this work, the crystallization process of selenium was accelerated by ultrasonic wave. The effects of ultrasonic waves and conventional conditions of selenium crystallization were compared to understand the effects of different conditions on crystallization, including ultrasonic time, ultrasonic power, reduction temperature, and H2SeO3 concentration. The mechanism of ultrasound affecting selenium crystallization was also investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results showed that ultrasonic time, ultrasonic power, and reduction temperature significantly influenced the crystallization process and morphology of selenium. Ultrasonic time had a large effect on the completeness (all products have been crystallized) and integrity of the crystallization of the products. Meanwhile, ultrasonic power and reduction temperature had no effect on the completeness of crystallization. However, it had a significant effect on the morphology and integrity of the crystallized products, and different morphologies of the nano-selenium materials could be obtained by changing the ultrasonic parameters. Both primary and secondary nucleation are important in the process of ultrasound-accelerated selenium crystallization. The cavitation effect and mechanical fluctuant effects generated by ultrasound could reduce the crystallization induction time and accelerate the primary nucleation rate. The high-speed micro-jet formed in the rupture of the cavitation bubble generated is the most important reason to influence the secondary nucleation of the system.  相似文献   

12.
In this paper, the growth of polycrystalline chemical vapour deposition (CVD) diamond thin films on fused silica optical fibres has been investigated. The research results show that the effective substrate seeding process can lower defect nucleation, and it simultaneously increases surface encapsulation. However, the growth process on glass requires high seeding density. The effects of suspension type and ultrasonic power were the specific objects of investigation. In order to increase the diamond density, glass substrates were seeded using a high-power sonication process. The highest applied power of sonotrode reached 72 W during the performed experiments. The two, most common diamond seeding suspensions were used, i.e. detonation nanodiamond dispersed in (a) dimethyl sulfoxide and (b) deionised water. The CVD diamond nucleation and growth processes were performed using microwave plasma assisted chemical vapour deposition system. Next, the seeding efficiency was determined and compared using the numerical analysis of scanning electron microscopy images. The molecular composition of nucleated diamond was examined with micro-Raman spectroscopy. The sp3/sp2 band ratio was calculated using Raman spectra deconvolution method. Thickness, roughness, and optical properties of the nanodiamond films in UV–vis wavelength range were investigated by means of spectroscopic ellipsometry. It has been demonstrated that the high-power sonication process can improve the seeding efficiency on glass substrates. However, it can also cause significant erosion defects at the fibre surface. We believe that the proposed growth method can be effectively applied to manufacture the novel optical fibre sensors. Due to high chemical and mechanical resistance of CVD diamond films, deposition of such films on the sensors is highly desirable. This method enables omitting the deposition of an additional adhesion interlayer at the glass–nanocrystalline interface, and thus potentially increases transmittance of the optical system.  相似文献   

13.
In order to provide a reference for improving the physicochemical properties of starch, the study of starch polyphenol complex interaction has aroused considerable interest. As a common method of starch modification, ultrasound can make starch granules have voids and cracks, and make starch and polyphenols combine more closely. In this research, canistel seed starch was modified by ultrasonic treatment alone or combined with quercetin. The molecular structure, particle characteristics and properties of starch were evaluated. With the increase of ultrasonic temperature, the particle size of the dextrinized starch granules increased, but the addition of quercetin could protect the destruction of starch granule size by ultrasonic; X-ray diffraction and infrared spectra indicated that quercetin was bound to the surface of canistel seed starch through hydrogen bonding, and the complex and the original starch had the same crystal structure and increased crystallinity; by molecular simulation, quercetin bound inside the starch molecular helix preserved the crystalline helical configuration of starch to some extent and inhibited the complete unhelicalization of starch molecules. Meanwhile, hydrogen bonding was the main driving force for the binding of starch molecules to quercetin, and van der Waals interactions also promoted the binding of both. In the physicochemical properties, as the temperature increased after the combination of ultrasonic modified starch combined with quercetin, the solubility, swelling force and apparent viscosity of the compound increased significantly, and it has higher stability and shear resistance.  相似文献   

14.
Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer.  相似文献   

15.
The effect of ultrasound on nucleation phenomena in the heat storage material Na2HPO4.12H2O was investigated by determining the primary nucleation probability and induction time, and by looking at heat generation phenomena in the initial stage of nucleation. The experimental results show that the primary nucleation probability dramatically increased, and the induction time decreased under the ultrasound irradiation, and in addition, the rate of temperature rise was dependent upon the ultrasonic output. Based on these results and the theoretical relationship between the number of primary nuclei and the heat generation rate, it is proposed that the number of primary nuclei depends upon the ultrasonic output.  相似文献   

16.
Calcium alginate (CaAlg) beads were prepared using ultrasound for use in the removal of lead from natural and wastewaters by ion exchange. Ultrasound was applied in a batch mode with an ultrasonic bath or in a flow mode using an ultrasonic clamp-on device. For comparison purposes the synthesis was performed in batch mode in the absence of the ultrasound. The beads prepared using ultrasound showed a greater ion exchange capability which could be ascribed to a larger specific surface area as a result of surface roughening induced by cavitation.Scanning Electron Microscopy (SEM) images revealed that the roughening was in the form of corrugation for the product with the best ion exchange capability obtained in the flow process where preformed CaAlg droplets were subjected to ultrasound during the setting process. These beads performed 11% better for lead removal than those synthesized in the absence of ultrasound.  相似文献   

17.
Nucleation, as an important stage of freezing process, can be induced by the irradiation of power ultrasound. In this study, the effect of irradiation temperature (−2 °C, −3 °C, −4 °C and −5 °C), irradiation duration (0 s, 1 s, 3 s, 5 s, 10 s or 15 s) and ultrasound intensity (0.07 W cm−2, 0.14 W cm−2, 0.25 W cm−2, 0.35 W cm−2 and 0.42 W cm−2) on the dynamic nucleation of ice in agar gel samples was studied. The samples were frozen in an ethylene glycol-water mixture (−20 °C) in an ultrasonic bath system after putting them into tubing vials. Results indicated that ultrasound irradiation is able to initiate nucleation at different supercooled temperatures (from −5 °C to −2 °C) in agar gel if optimum intensity and duration of ultrasound were chosen. Evaluation of the effect of 0.25 W cm−2 ultrasound intensity and different durations of ultrasound application on agar gels showed that 1 s was not long enough to induce nucleation, 3 s induced the nucleation repeatedly but longer irradiation durations resulted in the generation of heat and therefore nucleation was postponed. Investigation of the effect of ultrasound intensity revealed that higher intensities of ultrasound were effective when a shorter period of irradiation was used, while lower intensities only resulted in nucleation when a longer irradiation time was applied. In addition to this, higher intensities were not effective at longer irradiation times due to the heat generated in the samples by the heating effect of ultrasound. In conclusion, the use of ultrasound as a means to control the crystallization process offers promising application in freezing of solid foods, however, optimum conditions should be selected.  相似文献   

18.
Growth of epitaxial graphene (EG) on silicon carbide (SiC) is regarded as one of the most effective routes to high-quality graphene towards practical applicability. We try to build up a model to illuminate the nucleation process of EG on SiC by thermal decomposition. The model is derived from some experimental results and discloses that surface diffusion plays an important role in the nucleation. For the chemical vapor deposition process used, the organic gas as carbon precursor enables carbon deposition quickly for supporting the growth of high-quality graphene via vapor transformation, so that the nucleated and final graphene becomes almost stress-free and mimics the free-standing graphene. Our findings have a potential in preparing high-quality graphene by controlling the nucleation conditions.  相似文献   

19.
Sonocrystallization implies the application of ultrasound radiation to control the nucleation and crystal growth depending on the actuation time and intensity. Its application allows to induce nucleation at lower supersaturations than required under standard conditions. Although extended in inorganic and organic crystallization, it has been scarcely explored in protein crystallization. Now, that industrial protein crystallization is gaining momentum, the interest on new ways to control protein nucleation and crystal growth is advancing. In this work we present the development of a novel ultrasound bioreactor to study its influence on protein crystallization in agarose gel. Gel media minimize convention currents and sedimentation, favoring a more homogeneous and stable conditions to study the effect of an externally generated low energy ultrasonic irradiation on protein crystallization avoiding other undesired effects such as temperature increase, introduction of surfaces which induce nucleation, destructive cavitation phenomena, etc. In-depth statistical analysis of the results has shown that the impact of ultrasound in gel media on crystal size populations are statistically significant and reproducible.  相似文献   

20.
胡松青  李琳  陈玲 《应用声学》2005,24(5):323-328
采用不同电功率的超声波处理了聚乙二醇(PEG6000)溶液。凝胶渗透色谱(GPC)分析超声处理后的PEG溶液发现,当超声电功率超过250W时,PEG分子量随超声波作用强度的增大而减少,随超声波作用时间的延长而增大;在电功率超过250W超声波作用下,傅立叶红外光谱(FT-IR)分析表明,组成PEG的单体没有明显改变,但是,羟基含量分析表明,PEG固体样品中的羟基含量有所减少。结合实验结果,根据高分子化学、有机化学和超声化学中相关理论对PEG超声化学反应机理进行了探讨,认为:当超声波作用于PEG溶液时,同时存在有PEG的缩水聚合反应和自由基降解反应,当频率为20-25kHz、电功率为250-600W的超声作用于PEG6000溶液时,缩水聚合反应占主导地位。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号