首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrasound-assisted extraction (UAE) process of chlorophylls (a, b) and carotenoids in aqueous ethanol solutions from spinach leaves was upscaled from a batch laboratory reactor to a continuous modular flow-cell of pilot scale. The extraction in the laboratory scale was organized in a loop reactor, where pulp was circulated between a stirred vessel and the ultrasound reactor. The pilot scale extraction was made in a novel continuous tubular flow-cell reactor. The analysis of the experimental data proved that the ultrasound application provided a better extraction yield. In the laboratory scale, the application of ultrasound (24 kHz and 2500 W/L) showed the 2.6-fold higher maximum extraction yield compared to non-sonicated conventional solvent extraction. In the pilot scale, the effect was less significant (1.9-fold), due to smaller ultrasound power density (25 kHz and 1500 W/L). The scale-up of the UAE was based on equal extraction yield at both scales. The scale-up revealed that 2.5-fold higher volume-specific ultrasound power is required in the pilot scale to reach the yield obtained in the laboratory scale reactor.  相似文献   

2.
In this work, multi-frequency ultrasound (working modes for the single-, dual- and tri-frequency in simultaneous ways) was applied to extract bioactive compounds from purple eggplant peels. The single-factor experiments were performed by varying six independent variables. A six-level-five-factor uniform design (UD) was further employed to evaluate the interaction effects between different factors. It was found that extraction temperature and extraction time significantly affected the total phenolic content (TPC), whereas the total monomeric anthocyanins (TMA) was mainly influenced by ethanol concentration, extraction temperature and solid-liquid ratio. Based on partial least-squares (PLS) regression analysis, the optimal conditions for TPC extraction were: 53.6 % ethanol concentration, 0.336 mm particle size, 44.5 °C extraction temperature, 35.2 min extraction time, 1:43 g/mL solid-liquid ratio, and similar optimal conditions were also obtained for TMA. Furthermore, the TPC and TMA extraction were investigated by ultrasound in different frequencies and power levels. Compared with single-frequency (40 kHz) and dual-frequency ultrasound (25 + 40 kHz), the extraction yield of TPC and TMA with tri-frequency ultrasound (25 + 40 + 70 kHz) increased by 23.65 % and 18.76 % respectively, which suggested the use of multi-frequency ultrasound, especially tri-frequency ultrasound, is an efficient strategy to improve the TPC and TMA extracts in purple eggplant peels.  相似文献   

3.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

4.
Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2 N of sodium hydroxide for alkaline hydrolysis of the SDG–HMG complex, an extraction time of 60 min at a temperature of 25 °C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(6):2176-2184
Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120 kHz), ultrasonic power density (50, 100, 150 W/L) and extraction time (5, 15, 25 min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p < 0.05). The Box–Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40 kHz, a power density of 150 W/L and 25 min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31 mg GA/100 g fw for total phenolics and 2.04 mg quercetin/100 g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66 mg Trolox/100 g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors’ knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published.  相似文献   

6.
Sun Y  Bi J  Zhang L  Ye B 《Ultrasonics sonochemistry》2012,19(6):1150-1154
In this study, the application of ultrasound-assisted extraction (UAE) method was shown to be more efficient in extracting anti-tumor bufadienolides (bufalin, cinobufagin and resibufogenin) from important animal medicine of ChanSu than the maceration extraction (ME) and soxhlet extraction (SE) method. The effects of ultrasonic variables including extraction solvent, solvent concentration, solvent to solid ratio, ultrasound power, temperature, extraction time and particle size on the yields of three bufadienolides were investigated. The optimum extraction conditions found were: 70% (v/v) methanol solution, solvent to solid ratio of 10ml/g, ultrasound power of 125W, temperature of 20°C, extraction time of 20min and particle size of 60-80 mesh. The extraction yields of bufalin, cinobufagin and resibufogenin were 43.17±0.85, 52.58±1.12, 137.70±2.65mg/g, respectively. In order to achieve a similar yield as UAE, soxhlet extraction required 6h and maceration extraction required much longer time of 18h. The results indicated that UAE is an alternative method for extracting bufadienolides from ChanSu.  相似文献   

7.
This study investigated the use of ultrasound-assisted extraction (UAE) to improve the extraction efficiency of the classical solvent extraction techniques such as maceration and soxhlet extraction to extract anti-oxidant activity compounds, anthraquinones, from the root of Morinda citrifolia. The effects of different extraction conditions were determined, i.e., temperature of (25, 45, 60 °C), ultrasonic power, solvent types, and compositions of ethanol in ethanol–water mixtures. The results show that the yield increases with increasing extraction times and extraction temperatures. The percent recovery of anthraquinones using ultrasound was found to be highly dependent on the type of solvents (acetone > acetonitrile > methanol > ethanol). Furthermore, the use of ethanol–water solution as extraction solvent increased the yield of anthraquinones due to the relative polarity, the swelling effect of plant tissue matrix by water, and increased sound absorption. To achieve the same recovery as that achieved by UAE, soxhlet extraction and maceration required much longer time.  相似文献   

8.
The tannery industry generates huge amount of waste with high Cr concentration, being classified as a dangerous waste. The development of alternative treatments for these residues aiming environmental friendly protocols are important topics of research. In this work, the use of ultrasound (US) energy for Cr removal from residual tanned leather was investigated. Ultrasound-assisted extraction (UAE) experiments were carried out in several systems as ultrasonic baths, cup horns, and probes, allowing to evaluate several frequencies (20–130 kHz) and power delivered to the extraction system. The following experimental conditions were evaluated: extraction solution (HCl, HNO3, H2SO4, CH2O2 and C2H2O4), temperature (10–90 °C), time (1–40 min), US amplitude (10–90%), feedstock amount (50–450 mg), and concentration of extraction solution (0.1–4 mol L−1). A multivariate factorial design with 10 axial points and 3 central points was applied. After UAE optimization an efficiency of 92% was achieved for Cr removal using 150 mg of feedstock, 3 mol L−1 HNO3, at 30 °C, 90% of amplitude, and 30 min. The same efficiency was not observed using mechanical stirring (100–500 rpm), which was lower than 65%. To prove the applicability of the proposed process some experiments for scaling up were performed using several reactor loads (1–9 L). Moreover, using the proposed UAE process Cr was efficiently removed at lower reaction time and at room temperature only by using US and diluted acid solution, representing energy and reagents saving.  相似文献   

9.
The effects of various factors, including the extraction time, temperature, solvent/material ratio, the ultrasonic intensity and duty cycle of ultrasonic irradiation on the extraction yield of all-trans-lycopene from red grapefruit by ultrasound-assisted extraction (UAE) were investigated. In comparison with conventional solvent extraction (CSE), UAE showed a pronounced greater extraction yield and reduced extraction time effectively with a peak value at 30 min. The extraction yield was significantly influenced by temperature and the optimum condition was 30 °C. The extraction yield increased with increasing of solvent/material ratio until equilibrium was arrived at the optimal ratio of 3:1 (mL/g). The extraction yield increased first and then decreased with an increase in ultrasonic intensity. The extraction yield of UAE increased with the increase of duty cycle, whereas pulsed ultrasound with proper intervals was more efficient than continuous ultrasonication. The degradation via isomerisation of all-trans-lycopene under ultrasonic treatment was also observed with the formation of 9,13′-di-cis-, 9,13-di-cis-, 15-cis-, 13-cis- and 9-cis-lycopene isomers which were tentatively identified by HPLC-PAD.  相似文献   

10.
The use of ultrasound to enhance the regeneration of zeolite 13X for efficient utilization of thermal energy was investigated as a substitute to conventional heating methods. The effects of ultrasonic power and frequency on the desorption of water from zeolite 13X were analyzed to optimize the desorption efficiency. To determine and justify the effectiveness of incorporating ultrasound from an energy-savings point of view, an approach of constant overall input power of 20 or 25 W was adopted. To measure the extent of the effectiveness of using ultrasound, the ultrasonic-power-to-total power ratios of 0.2, 0.25, 0.4 and 0.5 were investigated and the results compared with those of no-ultrasound (heat only) at the same total power. To analyze the effect of ultrasonic frequency, identical experiments were performed at three nominal ultrasonic frequencies of ~28, 40 and 80 kHz. The experimental results showed that using ultrasound enhances the regeneration of zeolite 13X at all the aforementioned power ratios and frequencies without increasing the total input power. With regard to energy consumption, the highest energy-savings power ratio (0.25) resulted in a 24% reduction in required input energy and with an increase in ultrasonic power, i.e. an increase in acoustic-to-total power ratio, the effectiveness of applying ultrasound decreased drastically. At a power ratio of 0.2, the time required for regeneration was reduced by 23.8% compared to the heat-only process under the same experimental conditions. In terms of ultrasonic frequency, lower frequencies resulted in higher efficiency and energy savings, and it was concluded that the effect of ultrasonic radiation becomes more significant at lower ultrasonic frequencies. The observed inverse proportionality between the frequency and ultrasound-assisted desorption enhancement suggests that acoustic dissipation is not a significant mechanism to enhance mass transfer, but rather other mechanisms must be considered.  相似文献   

11.
In view of the increasing demand for rare-earth elements (REE) in many areas of high technology, alternative methods for the extraction of these elements have been developed. In this work, a process based on the use of ultrasound for the extraction of REE from carbonatite (an igneous rock) is proposed to avoid the use of concentrated reagents, high temperature and excessive extraction time. In this pioneer work for REE extraction from carbonatite rocks in a preliminary investigation, ultrasonic baths, cup horn systems or ultrasound probes operating at different frequencies and power were evaluated. In addition, the power released to the extraction medium and the ultrasound amplitude were also investigated and the temperature and carbonatite mass/volume of extraction solution ratio were optimized to 70 °C and 20 mg/mL, respectively. Better extraction efficiencies (82%) were obtained employing an ultrasound probe operating at 20 kHz for 15 min, ultrasound amplitude of 40% (692 W dm−3) and using a diluted extraction solution (3% v/v HNO3 + 2% v/v HCl). It is important to mention that high extraction efficiency was obtained even using a diluted acid mixture and relatively low temperature in comparison to conventional extraction methods for REE. A comparison of results with those obtained by mechanical stirring (500 rpm) using the same conditions (time, temperature and extraction solution) was carried out, showing that the use of ultrasound increased the extraction efficiency up to 35%. Therefore, the proposed ultrasound-assisted procedure can be considered as a suitable alternative for high efficiency extraction of REE from carbonatite rocks.  相似文献   

12.
Ultrasound-assisted extraction of rapeseed oil was investigated and compared with conventional extraction for energy efficiency, throughput time, extraction yield, cleanness, processing cost and product quality. A multivariate study enabled us to define optimal parameters (7.7 W/cm2 for ultrasonic power intensity, 40 °C for processing temperature, and a solid/liquid ratio of 1/15) for ultrasound-assisted extraction of oil from oilseeds to maximize lipid yield while reducing solvent consumption and extraction time using response surface methodology (RSM) with a three-variable central composite design (CCD). A significant difference in oil quality was noted under the conditions of the initial ultrasound extraction, which was later avoided using ultrasound in the absence of oxygen. Three concepts of multistage cross-current extraction were investigated and compared: conventional multistage maceration, ultrasound-assisted maceration and a combination, to assess the positive impact of using ultrasound on the seed oil extraction process. The study concludes that ultrasound-assisted extraction of oil is likely to reduce both economic and ecological impacts of the process in the fat and oil industry.  相似文献   

13.
Edible insects have been considered as a sustainable and novel protein source to replace animal-derived proteins. The present study aimed to extract Tenebrio molitor larvae proteins (TMP) using ultrasound-assisted alkaline extraction (UAE). Effects of different UAE times (10, 20, 30, 40, and 50 min) on the structural properties and in vitro digestibility of TMP were comparatively investigated with the traditional alkaline extraction method. The results revealed that ultrasonication could effectively alter the secondary/tertiary structures and thermal stability of TMP during UAE. The molecular unfolding and subsequent aggregation of TMP during UAE were mainly attributed to the formation of disulfide bonds and hydrophobic interactions. Moreover, TMP extracted by UAE had higher in vitro digestibility and digestion kinetics than those extracted without ultrasound, and the intermediate UAE time (30 min) was the optimal ultrasound parameter. However, longer UAE times (40 and 50 min) lowered the digestibility of TMP due to severe protein aggregation. The present work provides a potential strategy for the extraction of TMP with higher nutritional values.  相似文献   

14.
An ultrasound-assisted extraction (UAE) was optimized for the extraction of bioactive compound (total phenolic compound and total flavonoid content) with antioxidant activity (DPPH and FRAP assays) using response surface methodology based on Box-Behnken design (BBD). The effect of extraction temperature (X1: 30–70 °C), extraction time (X2: 25–45 min) and amplitude (X3: 30–50%) were determined. In addition, antimicrobial activity and application of optimized makiang seed extract (MSE) were also evaluated. Results showed that the optimum condition of UAE were X1: 51.82 °C, X2: 31.87 min and X3: 40.51%. It was also found that gallic acid was the major phenolic compound of optimized MSE and its minimum inhibitiory concentration (MIC) and minimum bactericidal concentration (MBC) was between 1.56 - 6.25 and 25–100 mg/mL respectively. The addition of MSE could enhance the stability of orange juice and shelf life extension was also obtained. This research finding suggests the beneficial opportunities for ultrasound-assisted extraction for the production of bioactive compound from makiang seed with antioxidant activity leading to an application in medicinal and functional food industry.  相似文献   

15.
The ultrasonic horn and bath reactors were compared based on production of angiotensin-converting-enzyme (ACE) inhibitory peptides from defatted wheat germ proteins (DWGP). The DWGP was sonicated before hydrolysis by Alcalase. Degree of hydrolysis, ACE-inhibitory activity, surface hydrophobicity, fluorescence intensity, free sulfhydryl (SH), and disulfide bond (SS) were determined. The highest ACE-inhibitory activity of DWGP hydrolysate was obtained at power intensity of 191.1 W/cm2 for 10 min in the ultrasonic horn reactor. The fixed frequency of 33 kHz and the sweep frequency of 40 ± 2 kHz resulted in the maximum ACE-inhibitory activity. The combined irradiation of dual fixed frequency (24/68 kHz) produced significant increase in ACE-inhibitory activity compared with single frequency (33 kHz). The ultrasonic probe resulted in significant higher ACE-inhibitory activity compared with ultrasonic bath operating at single or dual fixed and sweep frequencies. The changes in conformation of the DWGP due to sonication were confirmed by the changes in fluorescence intensity, surface hydrophobicity, SHf and SS contents and they were found in conformity with the ACE-inhibitory activity in case of the ultrasonic horn reactor but not in bath reactor.  相似文献   

16.
A sonochemical reactor was developed to study the ultrasound-assisted cyanide extraction of gold from gold ore at low temperature. The effects of ultrasound on gold leaching in low temperature and conventional conditions were investigated. At the low temperature of 10 °C, ultrasound-assisted extraction increased extraction rate of gold by 0.6%–0.8% and reduced the gold content of cyanide tailings to 0.28 g/t in the leaching of gold concentrate and cyanide tailings, respectively. At the conventional temperature of 25 °C, ultrasound-assisted extraction obtained a 0.1% higher extraction rate of gold compared with conventional extraction, with the unit consumption of NaCN reduction of 15%. The analysis of kinetic model also demonstrated that sonication indeed improved the reaction of gold leaching greatly. The mineralogy and morphology of ore were further analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and particle size analyzer to explore the strengthening mechanism of gold leaching. The results showed that the ore particles were smashed, the ore particle surface was peeled, the passive film was destroyed and the reaction resistance decreased under ultrasonic processing. Therefore, the extraction rate of gold was improved and the extraction time was shortened significantly in ultrasound-assisted cyanide extraction.  相似文献   

17.
This review presents a complete picture of current knowledge on ultrasound-assisted extraction (UAE) in food ingredients and products, nutraceutics, cosmetic, pharmaceutical and bioenergy applications. It provides the necessary theoretical background and some details about extraction by ultrasound, the techniques and their combinations, the mechanisms (fragmentation, erosion, capillarity, detexturation, and sonoporation), applications from laboratory to industry, security, and environmental impacts. In addition, the ultrasound extraction procedures and the important parameters influencing its performance are also included, together with the advantages and the drawbacks of each UAE techniques. Ultrasound-assisted extraction is a research topic, which affects several fields of modern plant-based chemistry. All the reported applications have shown that ultrasound-assisted extraction is a green and economically viable alternative to conventional techniques for food and natural products. The main benefits are decrease of extraction and processing time, the amount of energy and solvents used, unit operations, and CO2 emissions.  相似文献   

18.
In this work, extraction of flavonoids from peanut shells has been studied in the presence of ultrasound and the results are compared with Soxhlet and heat reflux extraction for establishing the process intensification benefits. The process optimization for understanding the effects of operating parameters, such as ethanol concentration, particle size, solvent to solid ratio, extraction temperature, ultrasonic power and ultrasonic frequency, on the extraction of flavonoids has been investigated in details. The highest extraction yield (9.263 mg/g) of flavonoids was achieved in 80 min at optimum operating parameters of particle size of 0.285 mm, solvent to solid ratio of 40 ml/g, extraction temperature of 55 °C, ultrasonic power of 120 W and ultrasonic frequency of 45 kHz with 70% ethanol as the solvent. Two kinetic models (i.e. phenomenological model and Peleg’s model) have been introduced to describe the extraction kinetic of flavonoids by fitting experimental data and predict kinetic parameters. Good performance with slight loss of goodness of fit of two models was found by comparing their coefficient of determination (R2), root mean square error (RMSE) and/or mean percentage error (MPE) values. This work would provide the reduction of degradation and the economic evaluation for the extraction processes of flavonoids from peanut shells, as well as give a better explanation for the mechanism of ultrasound.  相似文献   

19.
Anthocyanins (Acys) are naturally occurring compounds that impart color to fruit, vegetables and plants. The extraction of Acys from red raspberry (Rubus idaeus L. var. Heritage) by ultrasound-assisted process (UAP) was studied. A central composite rotate design (CCRD) was used to obtain the optimal conditions of ultrasound-assisted extraction (UAE), and the effects of operating conditions, such as the ratio of solvents to materials, ultrasonic power and extraction time, on the extraction yield of Acys were studied through response surface methodology (RSM). The optimized conditions of UAE were as follows: ratio of solvents to materials was 4:1 (ml/g), extraction time was 200 s, and ultrasonic power was 400 W. Under these conditions 34.5 mg of Acys from 100 g of fresh fruits (TAcy, expressed as cyanidin-3-glucoside), approximately 78.13% of the total red pigments, could be obtained by UAE. The Acys compositions of extracts were identified by high-performance liquid chromatography–mass spectrometry (HPLC–MS), 12 kinds of Acys had been detected and eight kinds of Acys were characterized. Result indicated that cyanidin-3-sophoroside, cyanidin-3-(2G-glucosylrutinoside), cyanidin-3-sambubioside, cyanidin-3-rutinoside, cyanidin-3-xylosylrutinoside, cyanidin-3-(2G-glucosylrutinoside), and cyanidin-3-rutinoside were main components in extracts. In addition, in comparison with the conventional solvent extraction, UAE is more efficient and rapid to extract Acys from red raspberry, due to the strong disruption of fruit tissue structure under ultrasonic acoustic cavitation, which had been observed with the scanning electron microscopy (SEM). However, the Acys compositions in extracts by both methods were similar, which were investigated using HPLC profile.  相似文献   

20.
In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only “in situ” water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm2 and 59.83 °C giving a polyphenol yield of 50.02 mg GA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled “in situ” water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号