首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 680 毫秒
1.
In this study combined effect of ultrasound-induced acoustic cavitation and microbubbles during meat brining on pork loin (Longissimus dorsi) was evaluated. Cylindrical shape (diameter 15 mm, height 80 mm) pork loin samples were cut and immersed in 200 g L-1 NaCl brine and treated with the following brining methods for 180 min: static brining (SB), ultrasound assisted brining (US) and ultrasound combined with microbubbles in brine (USMB). Ultrasound was generated with 20 kHz frequency, 5,09 W/cm2 maximum intensity and 100 W maximum power. Microbubbles in brine were produced by a gas–liquid mixing pump. Effect of ultrasound and microbbubles on NaCl content and diffusion in pork loin, mass balance, water binding capacity (WBC), protein denaturation and meat tissue microstructure were evaluated. The US and USMB brinings enhanced the NaCl diffusion into meat compared to meat brined under static conditions. The constant diffusion coefficient (D) model precisely described the NaCl diffusion kinetics during brinings. The ultrasound and microbbubles resulted in microscopic pores on the surface of myofibers. Decreasing WBC was observed for all brining methods. Myosin was not detectable in any of the brining methods. Denaturation temperature of actin showed a decreasing tendency with increasing brining time independently the brining methods.  相似文献   

2.
The effects of multi-frequency power ultrasound (MPU) pretreatment on the kinetics and thermodynamics of corn gluten meal (CGM) were investigated in this research. The apparent constant (KM), apparent break-down rate constant (kA), reaction rate constants (k), energy of activation (Ea), enthalpy of activation (ΔH), entropy of activation (ΔS) and Gibbs free energy of activation (ΔG) were determined by means of the Michaelis–Menten equation, first-order kinetics model, Arrhenius equation and transition state theory, respectively. The results showed that MPU pretreatment can accelerate the enzymolysis of CGM under different enzymolysis conditions, viz. substrate concentration, enzyme concentration, pH, and temperature. Kinetics analysis revealed that MPU pretreatment decreased the KM value by 26.1% and increased the kA value by 7.3%, indicating ultrasound pretreatment increased the affinity between enzyme and substrate. In addition, the values of k for ultrasound pretreatment were increased by 84.8%, 41.9%, 28.9%, and 18.8% at the temperature of 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased Ea, ΔH and ΔS by 23.0%, 24.3% and 25.3%, respectively, but ultrasound had little change in ΔG value in the temperature range of 293–323 K. In conclusion, MPU pretreatment could remarkably enhance the enzymolysis of CGM, and this method can be applied to protein proteolysis industry to produce peptides.  相似文献   

3.
The water activity (Aw) reduction technique is widely used to preserve different food products, which are further rehydrated in order to be processed or consumed. The food hydration is time-consuming and, thus, a limiting unit operation during process. Therefore, there is an ongoing need to enhance the mass transfer phenomena during processing. The ultrasound technology (US) has been widely studied to improve different mass transfer processes of food. However, there is a lack of knowledge in relation to its application in the hydration process. This work evaluated the hydration process of sorghum seeds, comparing the effect of heating and ultrasound application in order to improve the hydration rate. The sorghum hydration kinetic was described by Peleg Model, whose parameters were evaluated for both processes. The US increased both water uptake rate (related to Peleg k1 parameter) and equilibrium moisture content (related to Peleg k2 parameter). The time for reach 90% of the control process equilibrium moisture content was 40% lower when the US was applied. The effect of processing at 53 °C was higher than applying US at the evaluated power, and its limitations were discussed. The effect of combining both ultrasound and heating application was negligible when it was compared to the heated process. The obtained results highlighted that the US technology can be successfully used to optimize the hydration process of grains with directly industrial application.  相似文献   

4.
The present work investigated the enzymolysis kinetics, thermodynamics and model of porcine cerebral protein (PCP) which was pretreated by single-frequency countercurrent and pulsed ultrasound. The kinetic constants for ultrasonic pretreated and traditional enzymolysis have been determined. Results showed that the value of KM in ultrasonic PCP (UPCP) enzymolysis decreased by 9% over that in the traditional enzymolysis. The values of reaction rate constant (k) for UPCP enzymolysis increased by 207%, 121%, 62%, and 45% at 293, 303, 313 and 323 K, respectively. For the thermodynamic parameters, ultrasound decreased activation energy (Ea), change in enthalpy (ΔH) and entropy (ΔS) by 76%, 82% and 31% in PCP, respectively. However, ultrasound had little change in Gibbs free energy (ΔG) value in the temperature range of 293–323 K. Therefore, a general kinetic equation for the enzymolysis model of UPCP by a simple empirical equation was suggested. The experimental values fits with the enzymolysis kinetic model with a low average relative error (4%) confirmed that the kinetic model was accurate to reflect the enzymolysis process. The positive effect of single-frequency countercurrent and pulsed ultrasound in this study and application of the kinetic model may be useful for the release of bioactive peptides from meat processing by-products.  相似文献   

5.
This study aimed to investigate the effect of ultrasound curing with various working modes and frequency combinations, including mono-, dual- and tri-frequency, on the content of NaCl and tenderness of pork loins (Longissimus dorsi). The physical qualities, myoglobin, moisture migration, distribution, and microstructure of pork were also evaluated. The results displayed that the NaCl content of samples cured by simultaneous ultrasound (100 W/L) working mode with a frequency combination of 20, 40, and 60 kHz was higher than that of other ultrasound working modes. The effect of ultrasonic brining was significantly better than the static curing when the saline solution was >35 mL. In addition, the samples cured by simultaneous ultrasound had better physical qualities, including more pickling absorptivity, less cooking loss, and lower hardness, tenderness, and chewiness value. The intensity of lightness was reduced, although redness and yellowness remained unaltered compared to static curing. The myoglobin content decreased drastically without changing the oxygenation level, and the relaxation time of T2b and T21 was delayed. The microstructure indicated that the ultrasonic treatment could promote changes in meat texture. Overall, the simultaneous ultrasound at various frequencies could efficiently accelerate NaCl penetration and improve pork quality.  相似文献   

6.
Highly reactive zero-valent iron (ZVI) nanoparticles stabilized with carboxymethyl cellulose (CMC) were tested for reduction of nitrate in fresh water and brine. Batch kinetic tests showed that the pseudo first-order rate constant (k obs) with the stabilized nanoparticles was five times greater than that for non-stabilized counterparts. The stabilizer not only increased the specific surface area of the nanoparticles, but also increased the reactive particle surface. The allocation between the two reduction products, NH4 + and N2, can be manipulated by varying the ZVI-to-nitrate molar ratio and/or applying a Cu–Pd bimetallic catalyst. Greater CMC-to-ZVI ratios lead to faster nitrate reduction. Application of a 0.05 M HEPES buffer increased the k obs value by 15 times compared to that without pH control. Although the presence of 6% NaCl decreased k obs by 30%, 100% nitrate was transformed within 2 h in the saline water. The technology provides a powerful alternative for treating water with concentrated nitrate such as ion exchange brine.  相似文献   

7.
This research investigated the structural characteristics and enzymolysis kinetics of rice protein which was pretreated by energy-gathered ultrasound and ultrasound assisted alkali. The structural characteristics of rice protein before and after the pretreatment were performed with surface hydrophobicity and Fourier transform infrared (FTIR). There was an increase in the intensity of fluorescence spectrum and changes in functional groups after the pretreatment on rice protein compared with the control (without ultrasound and ultrasound assisted alkali processed), thus significantly enhancing efficiency of the enzymatic hydrolysis. A simplified kinetic equation for the enzymolysis model with the impeded reaction of enzyme was deduced to successfully describe the enzymatic hydrolysis of rice protein by different pretreatments. The initial observed rate constants (Kin,0) as well as ineffective coefficients (kimp) were proposed and obtained based on the experimental observation. The results showed that the parameter of kin,0 increased after ultrasound and ultrasound assisted alkali pretreatments, which proved the effects of the pretreatments on the substrate enhancing the enzymolysis process and had relation to the structure changes of the pretreatments on the substrate. Furthermore, the applicability of the simplified model was demonstrated by the enzymatic hydrolysis process for other materials.  相似文献   

8.
The emission of atomic Cl from NaCl has been detected during Vk-center annealing. The experiment utilizes the technique of temperature programmed thermally stimulated exoemission of particles after exposure of the sample to 1.5 keV electrons at 100 K. Direct evidence is provided for atomic Cl emission via the mechanism VkCl? + Cl. It is further argued that the exoelectrons observed during the same reaction are due to the formation of sodium chloride when the Cl atom from the Vk-center reacts with the excess surface Na produced during the electron bombardment.  相似文献   

9.
The efficacy of power ultrasound of 20 kHz in enhancing the volumetric mass transfer coefficient was investigated in this study. Breakage and dissolution of sparingly soluble benzoic acid dispersed in either water or 24% aqueous glycerol was monitored as a function of time and ultrasound power input. Particle size measurements were carried out at intermediate times during the experiment to estimate the mean particle size and surface area. Linear combination of lognormal distributions was found to fit the experimental particle size distribution data. The De Brouckere mean diameters (d43) obtained from the particle size distributions decreased with increase in the ultrasonic power level. Empirical correlations were developed for the evolution of surface area as a function of ultrasonic energy input per unit mass. The effect of ultrasound on the intrinsic mass transfer coefficient (kc) could be decoupled from the volumetric mass transfer coefficient (kca) as the surface area was also estimated. Different approaches involving either constant or variable intrinsic mass transfer coefficients were employed when carrying out the delineation. Mass transfer rates were enhanced due to both higher ultrasound induced intrinsic convective mass transfer coefficient and additional surface area created from particle breakage. To delineate the effects of particle breakage from solid dissolution, experiments were also carried out under non-mass transfer conditions by pre-saturating the solvents with benzoic acid. Both the solid-liquid systems examined in the present study attained saturation concentration when the ultrasonic energy input per unit mass was approximately 60 kJ/kg, irrespective of the ultrasonic power level setting.  相似文献   

10.
The objective of the study is to elucidate the effect of ultrasound treated salt solution on curing of pork meat. The interactions of salt (NaCl) solutions of 3 and 25% with the proteins of pork meat are studied. High intensity ultrasound operating at 20 kHz was used. The differential scanning calorimetry (DSC), NMR spin-spin relaxation time, unfrozen water and water diffusion coefficient measurements were carried out in meat cured with ultrasound treated and untreated salt solutions. The effect of ultrasonication was most evident from measured spin-spin relaxation times T21, the rate of chemical exchange of water protons k and the amount of unfrozen water Wunf in the meat. The measured diffusion coefficient of water Dw in meat cured with ultrasound treated and control salt solution did not show significant difference. The nuclear magnetic resonance (NMR) relaxation data, differential scanning calorimetry (DSC) and the diffusion coefficient data reliably show that the possible action of ultrasound to salt solution was manifested on the first 2 days of the experiment with a 3% salt solution.  相似文献   

11.
A series of physically cross-linked gelatin networks were prepared and the effects of salt concentration and chemical valence of the salt ions on the swelling properties of the gelatin gels were studied in detail. It was found that the swelling behaviors as polyelectrolytic or polyampholytic gels depended on the charge distribution on the gelatin chains. The swelling capacity of polyelectrolytic gels with excess positive charges decreased with an increase in salt concentrations. However, the swelling capacity of polyelectrolytic gels with excess negative charges showed a nonmonotonic change with salt concentration. For polyampholytic gels, the equilibrium swelling ratio increased monotonously with the concentration of NaCl and CaCl2 solutions. On the other hand, the swelling capacities of the polymer networks increased first and were then followed by a decrease with an increase in the concentration of AlCl3 solution. Moreover, the swelling kinetics of the gelatin gels in varied salt solutions with different concentrations was also investigated.  相似文献   

12.
An application of the thermal desorption technique to the study of desorption from the samples with a temperature gradient is discussed. The kinetics of first- and second-order desorption from linearly and exponentially heated samples with a parabolic temperature profile is considered. It is shown that the low-temperature part of the thermal desorption curve is described by the same equations as those for the desorption from the nongradient surface with the less effective area and with the temperature equal to that at the center of the nonuniformly heated sample. The approximate analytical expressions for the amount of adsorbed surface species as a function of time are derived. These expressions enable to find the kinetics order, the activation energy E and the preexponential factor k0 for the desorption process from thermal desorption spectra. In a first approximation the corrections for the nonuniformity of the sample temperature do not substantially change the value of E but slightly increase the value of k0. The correction procedure for k0 is described in detail. The possible application of the proposed method to various experimental conditions is discussed.  相似文献   

13.
The present work investigates the effectiveness of application of low intensity ultrasonic irradiation for the intensification of enzymatic depolymerization of aqueous guar gum solution. The extent of depolymerization of guar gum has been analyzed in terms of intrinsic viscosity reduction. The effect of ultrasonic irradiation on the kinetic and thermodynamic parameters related to the enzyme activity as well as the intrinsic viscosity reduction of guar gum using enzymatic approach has been evaluated. The kinetic rate constant has been found to increase with an increase in the temperature and cellulase loading. It has been observed that application of ultrasound not only enhances the extent of depolymerization but also reduces the time of depolymerization as compared to conventional enzymatic degradation technique. In the presence of cellulase enzyme, the maximum extent of depolymerization of guar gum has been observed at 60 W of ultrasonic rated power and ultrasonic treatment time of 30 min. The effect of ultrasound on the kinetic and thermodynamic parameters as well as the molecular structure of cellulase enzyme was evaluated with the help of the chemical reaction kinetics model and fluorescence spectroscopy. Application of ultrasound resulted in a reduction in the thermodynamic parameters of activation energy (Ea), enthalpy (ΔH), entropy (ΔS) and free energy (ΔG) by 47%, 50%, 65% and 1.97%, respectively. The changes in the chemical structure of guar gum treated using ultrasound assisted enzymatic approach in comparison to the native guar gum were also characterized by FTIR. The results revealed that enzymatic depolymerization of guar gum resulted in a polysaccharide with low degree of polymerization, viscosity and consistency index without any change in the core chemical structure which could make it useful for incorporation in food products.  相似文献   

14.
The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96 W cm−2) and treatment time (30, 60, 90 and 120 min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20 kHz and fresh beef at 48 h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (P < 0.05). As indicators of protein oxidation, the carbonyl contents were significantly affected by PUS (P < 0.05). SDS–PAGE analysis showed that PUS treatment increased protein aggregation through disulfide cross-linking, indicated by the decreasing content of total sulfhydryl groups which would contribute to protein oxidation. In addition, changes in protein structure after PUS treatment are suggested by the increases in free sulfhydryl residues and protein surface hydrophobicity. Fourier transformed infrared spectroscopy (FTIR) provided further information about the changes in protein secondary structures with increases in β-sheet and decreases in α-helix contents after PUS processing. These results indicate that PUS leads to changes in structures and oxidation of beef proteins caused by mechanical effects of cavitation and the resultant generation of free radicals.  相似文献   

15.
An efficient process based on a solid-state combustion technique has been developed to produce high crystalline and micrometer sized particles of ZnS:Mn+2 phosphor with sphalerite structure. The precursor mixture of 0.915Zn+S+0.05Mn+0.035ZnCl2+kNaCl composition (where k is the mole number of NaCl) was combusted under the argon atmosphere followed by post-heat treatment procedure at 700 °C. It was shown that photoluminescence (PL) intensity of ZnS sample can be easily controlled through adjusting NaCl concentration. In the optimized reaction conditions ZnS samples have showed PL intensity almost comparable to that of a commercial one, despite the relatively low purity of precursor materials used. Many interesting phenomena such as high luminescent efficiency, pure cubic ZnS formation after the post-heat treatment and strong influence of Cl ion on PL intensity have been observed and discussed.  相似文献   

16.
The results of study of evaporation of water droplets and NaCl salt solution from a solid substrate made of anodized aluminum are presented in this paper. The experiment provides the parameters describing the droplet profile: contact spot diameter, contact angle, and droplet height. The specific rate of evaporation was calculated from the experimental data. The water droplets or brine droplets with concentration up to 9.1 % demonstrate evaporation with the pinning mode for the contact line. When the salt concentration in the brine is taken up to 16.7 %, the droplet spreading mode was observed. Two stages of droplet evaporation are distinguished as a function of phase transition rate.  相似文献   

17.
In this study, a high-molecular-weight polysaccharide PL-N isolated from the alkaline extract of Phellinus linteus mycelia was degraded by ultrasound. Results showed that ultrasound treatment at different ultrasonic intensities decreased the intrinsic viscosity and molecular weight of PL-N, as well as narrowed the molecular weight distribution. A larger reduction in intrinsic viscosity and molecular weight was caused by a higher ultrasonic intensity. The degradation kinetics model was fitted to (1/Mt  1/M0) = k·t, and the reaction rate constant (k) increased with increasing ultrasonic intensity. Ultrasound degradation did not change the primary structure of PL-N, and scanning electron microscopy analysis indicated that the morphology of the original PL-N was different from that of degraded PL-N fractions. Antioxidant activity assays in vitro indicated that the degraded PL-N fraction with low molecular weight had stronger hydroxyl radical scavenging capacity and higher TEAC and FRAP values.  相似文献   

18.
The peroxyoxalate-chemiluminescence arising from reaction of bis(2,4,6-trichlorophenyl)oxalate with hydrogen peroxide in the presence of a brightener Tinopal CBS (2,2′-((1,1′-biphenyl)-4,4′-diyldi-2.1-ethenediyl)bisbenzene sulfonic acid, disodium salt) has been studied. The relationship between the chemiluminescence intensity and concentrations of bis(2,4,6-trichlorophenyl)oxalate, sodium salicylate (as catalyst), hydrogen peroxide and Tinopal CBS is reported. The chemiluminescence parameters including intensity at maximum chemiluminescence, time at maximum intensity, total light yield, theoretical maximum level of intensity and pseudo-first-order rate constants for the rise and fall of the chemiluminescence burst (kr and kf) were evaluated from computer fitting of the resulting intensity-time plots. The activation parameters Ea, ΔH, ΔS and ΔG for the rise and fall steps were evaluated from the temperature dependence of kr and kf values. The results were discussed in terms of chemically initiated electron transfer between a reactive intermediate and Tinopal CBS as fluorescence activator. A possible mechanism involving dioxetanone derivatives as intermediates is proposed. Since there is a linear relationship between reciprocal of chemiluminescence intensity and reciprocal of fluorescer concentration, an analytical method based on partial least squares (PLS) regression was proposed for quantitative determination of Tinopal CBS. Satisfactory results were obtained with percent relative prediction error (RPE%) of 2.52 and detection limit of 2.7×10−5 M.  相似文献   

19.
The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2–117.6 W/L for 5–15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product.  相似文献   

20.
《Ultrasonics sonochemistry》2014,21(5):1805-1814
The ultrasound assisted preparation of 1-(benzyloxy)-4-nitrobenzene from the reaction of 4-chloronitrobenzene (CNB) and benzyl alcohol was carried out successfully using potassium hydroxide and catalyzed by a new multi-site phase-transfer catalyst (MPTC) viz., 1,3,5-triethyl-1,3,5-trihexyl-1,3,5-triazinane-1,3,5-triium trichloride in a solid–liquid reaction condition (SL-MPTC). The advantage of using SL-MPTC is to avoid a serious hydration of potassium salt of benzyl alcohol in the reaction between 4-chloronitrobenzene (CNB) and benzyl alcohol. The reaction is greatly enhanced in the solid–liquid system, catalyzed by multi-site quaternary ammonium salt (MPTC) and ultrasound irradiation (40 kHz, 300 W) in a batch reactor, it shows that the overall reaction greatly enhanced with ultrasound irradiation than without ultrasound. The reaction mechanism is proposed and verified by examining the experimental evidence. A kinetic model is proposed in which a pseudo first-order rate law is sufficient to describe the results, such as the effects of agitation speed, ultrasound, different phase transfer catalysts and the effect of organic solvents, the amount of newly prepared MPTC, the effect of temperature, the amount of water, the concentration of 4-chloronitrobenzene (CNB) and potassium hydroxide concentrations. The apparent rate constant (kapp) were investigated in detail. Rational explanations to account for the phenomena on the results were made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号