首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional (2D) graphitic carbon nitride (g-C3N4) has invoked significant interest for photocatalytic applications for its excellent features such as high surface area, visible light absorption, and easy transportation of photogenerated charge carriers, but the most reported g-C3N4 show relatively low photoactivity due to inferior conductivity and rapid recombination of carriers. These can be overcome by inducing porosity in g-C3N4, followed by exfoliation and combining with other materials. Herein, we synthesize nanocavity-assisted oxygen-deficient Ti3+ self-doped blue TiO2(B) nanorods (BT) and integrate them on exfoliated porous g-C3N4 (PCN). The synthesized materials are tested for photocatalytic conversion of CO2 into solar fuels (H2, CO, and CH4). The fabricated BT/PCN heterostructures exhibit higher photocatalytic CO2 conversion activity and 92% CO-evolving selectivity than BT and PCN. The enhancement in activity of BT/PCN can be attributed to the efficient separation and transportation of charge carriers, facilitated by the unique properties of BT, PCN, and their synergistic interactions. We believe that these results can contribute to the improvement of cost-effectiveness, feasibility, and overall performance for real photocatalytic systems.  相似文献   

2.
Solar-to-fuel conversion through photocatalytic processes is regarded as promising technology with the potential to reduce reliance on dwindling reserves of fossil fuels and to support the sustainable development of our society. However, conventional semiconductor-based photocatalytic systems suffer from unsatisfactory reaction efficiencies due to limited light harvesting abilities. Recent pioneering work from several groups, including ours, has demonstrated that visible and infrared light can be utilized by plasmonic catalysts not only to induce local heating but also to generate energetic hot carriers for initiating surface catalytic reactions and/or modulating the reaction pathways, resulting in synergistically promoted solar-to-fuel conversion efficiencies. In this perspective, we focus primarily on plasmon-mediated catalysis for thermodynamically uphill reactions converting CO2 and/or H2O into value-added products. We first introduce two types of mechanism and their applications by which reactions on plasmonic nanostructures can be initiated: either by photo-induced hot carriers (plasmonic photocatalysis) or by light-excited phonons (photothermal catalysis). Then, we emphasize examples where the hot carriers and phonon modes act in concert to contribute to the reaction (plasmonic photothermal catalysis), with special attention given to the design concepts and reaction mechanisms of the catalysts. We discuss challenges and future opportunities relating to plasmonic photothermal processes, aiming to promote an understanding of underlying mechanisms and provide guidelines for the rational design and construction of plasmonic catalysts for highly efficient solar-to-fuel conversion.

Hot carrier activation and photothermal heat can be constructively coupled using plasmonic photothermal catalysts for synergistically promoted solar-to-fuel conversion efficiency.  相似文献   

3.
Heterostructures formed by the growth of one kind of nanomaterial in/on another have attracted increasing attention due to their microstructural characteristics and potential applications. In this work, SnS2–SnO2 heterostructures were successfully prepared by a facile hydrothermal method. Due to the enhanced visible‐light absorption and efficient separation of photo‐generated holes and electrons, the SnS2–SnO2 heterostructures display excellent photocatalytic performance for the degradation of rhodamine (RhB) under visible‐light irradiation. Additionally, it is found that the introduction of graphene into the heterostructures further improved photocatalytic activity and stability. In particular, the optimized SnS2–SnO2/graphene photocatalyst can degrade 97.1% of RhB within 60 min, which is about 1.38 times greater than that of SnS2–SnO2 heterostructures. This enhanced photocatalytic activity could be attributed to the high surface area and the excellent electron accepting and transporting properties of graphene, which served as an acceptor of the generated electrons to suppress charge recombination. These results provide a new insight for the design and development of hybrid photocatalysts.  相似文献   

4.
《中国化学快报》2020,31(9):2319-2324
Constructing heterostructures by combining COFs and TMD is a new strategy to design efficient photocatalysts for CO2 reduction reaction (CO2RR) due to their good stability, tunable band gaps and efficient charge separation. Based on the synthesis of completely novel C4N−COF in our previous reported work, a new C4N/MoS2 heterostructure was constructed and then the related structural, electronic and optical properties were also studied using first principle calculations. The interlayer coupling effect and charge transfer between the C4N and MoS2 layer are systematically illuminated. The reduced band gap of the C4N/MoS2 heterostructure is beneficial to absorb more visible light. For the formation of type-II band alignment, a built-in electric field appears which separates the photogenerated electrons and holes into different layers efficiently and produces redox active sites. The band alignment of the heterostructure ensures its photocatalytic activities of the whole CO2 reduction reaction. Furthermore, the charge density difference and charge carrier mobility confirm the existence of the built-in electric field at the interface of the C4N/MoS2 heterostructure directly. Finally, the high optical absorption indicates it is an efficient visible light harvesting photocatalyst. Therefore, this work could provide strong insights into the internal mechanism and high photocatalytic activity of the C4N/MoS2 heterostructure and offer guiding of designing and synthesizing COF/TMD heterostructure photocatalysts.  相似文献   

5.
Yin  Sheng  Shao  Yifan  Hu  Qingsong  Chen  Yong  Ding  Penghui  Xia  Jiexiang  Li  Huaming 《Research on Chemical Intermediates》2021,47(4):1601-1613

A Bi2O3/(BiO)2CO3 (BO/BOC) composite photocatalyst was in situ prepared via calcinating (BiO)2CO3. The as-prepared Bi2O3/(BiO)2CO3 composites displayed enhanced photocatalytic activity for the degradation of RhB under visible light. The structure–activity relationship between catalyst structure and properties was investigated by SEM, XRD, XPS, FTIR, BET, DRS and photoelectrochemical tests. Apart from the increased absorption of visible light, the accelerated charge separation and transfer was achieved via the intimate contact and matched band structure between Bi2O3 and (BiO)2CO3. The formation of heterogeneous structures could promote the production of reactive oxygen species (·O2?) and eventually improve the photocatalytic performance for the removal of organic contaminants. This heating treatment strategy might be extended for improving light absorbance and charge carriers separation for other UV-based photocatalysts.

  相似文献   

6.
The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar‐light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h?1 g?1) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h?1 g?1) were thus achieved. It is proposed that the overall water‐based CO2 conversion process can be achieved by combining light‐driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo‐induced green‐chemistry processes.  相似文献   

7.
《Arabian Journal of Chemistry》2020,13(11):8271-8300
Engineering visible light active photocatalytic systems for renewable energy production and environmental remediation has always been a promising technology to counter overall energy demands and pollution challenges. As a fascinating conjugated polymer graphitic carbon nitride (g-C3N4) has been developed as a hotspot in the research field as a metal-free semiconducting material with the appealing band gap of 2.7 eV. Recently, g-C3N4 has gained tremendous interest in photocatalytic wastewater abatement as well as for hydrogen (H2) generation, carbon dioxide (CO2) reduction, and pollutant degradation, under exposure to visible light. Plasmonic silver halides (AgX) such as AgCl, AgBr, and AgI as plasmonic photocatalyst have received immense research interest owing to their escalating photocatalytic efficacy and strong surface plasmon resonance effect (SPR). AgX is the photosensitive, broad bandgap semiconducting materials with effectual antimicrobial properties. This review summarizes the heterostructure of carbonaceous g-C3N4 with plasmonic AgX, to reduce the recombination of photo-generated charge carriers, thus enhancing the natural light absorption. g-C3N4 grafted AgX nanoarchitectures can be utilized for several potential applications, for instance, overall water splitting (OWS), CO2 conversion to hydrocarbon fuels, pollutant exclusion, and antibacterial disinfection. This review focuses on the evolution of g-C3N4 as well as AgX, facile, and synthetic routes for fabrication of g-C3N4 tailored AgX, construction of nano-junctions (AgX/g-C3N4) with various photocatalytic applications. Finally, we provided a viewpoint of current hassles and some perceptions of novel trends in this exciting as well as developing research arena.  相似文献   

8.
Highly-efficient photocatalytic conversion of CO2 into valuable carbon-contained chemicals possesses a tremendous potential in solving the energy crisis and global warming problem. However, the inadequate separation of photogenerated electron-hole pairs and the unsatisfied capture of CO2 stay the chief roadblocks. Herein, we designed a novel photocatalyst for CO2 reduction by assembling three-dimensional graphene (3D GR) with a typical metal-organic framework material UIO-66-NH2, aiming to construct a built-in electric field for charge separation as well as taking advantage of the typical 3D structure of GR for maximizing the exposed absorption site on the surface. The performance evaluation demonstrated that the photocatalytic activity has been improved for the composite materials compared with that of the pure UIO-66-NH2. Further mechanism investigations proved that the enhanced photocatalytic performance is attributed to the synergy of enhanced CO2 absorption and inhibited photogenerated charge recombination, which could be owing to the better distribution and exposure of absorption and reaction sites on composites, and the redistribution of photogenerated carriers between 3D GR and UIO-66-NH2. This study provides a promising pathway to probe nanocomposites based on MOFs in environmental improvement and other relevant fields.  相似文献   

9.
Fundamental photocatalytic limitations of solar CO2 reduction remain due to low efficiency, serious charge recombination, and short lifetime of catalysts. Herein, two-dimensional graphitic carbon nitride nanosheets with nitrogen vacancies (g-C3Nx) located at both three-coordinate N atoms and uncondensed terminal NHx species were prepared by one-step tartaric acid-assistant thermal polymerization of dicyandiamide. Transient absorption spectra revealed that the defects in g-C3N4 act as trapped states of charges to result in prolonged lifetimes of photoexcited charge carriers. Time-resolved photoluminescence spectroscopy revealed that the faster decay of charges is due to the decreased interlayer stacking distance in g-C3Nx in favor of hopping transition and mobility of charge carriers to the surface of the material. Owing to the synergic virtues of strong visible-light absorption, large surface area, and efficient charge separation, the g-C3Nx nanosheets with negligible loss after 15 h of photocatalysis exhibited a CO evolution rate of 56.9 μmol g−1 h−1 under visible-light irradiation, which is roughly eight times higher than that of pristine g-C3N4. This work presents the role of defects in modulating light absorption and charge separation, which opens an avenue to robust solar-energy conversion performance.  相似文献   

10.
This study aims to investigate the effect of replacing Ti with Zr in the SBU of MIL-125-NH2. We were able to replace Ti with Zr in the mixed metal synthesis of MIL-125-NH2, for the first time. After experimentally confirming the consistency in their framework structure and comparing their morphology, we related the femtosecond light dynamics with photocatalytic CO2 visible light conversion yield of the different variants in order to establish the composition-function relation in MIL-125 vis a vis CO2 reduction. Introducing Zr to the system was found to cause structure defects due to missing linkers. The lifetime of the charge carriers for the mixed metal samples were shorter than that of the MIL-125-NH2. The study of CO2 photocatalytic reduction under visible light indicated that the NH2 group enhances the photocatalytic activity while the Zr incorporation inside the MIL framework introduces no significant improvements. In addition, the material systems were modelled and simulated through DFT calculations which concluded that the decrease of the photocatalytic activity is not related to the system electronic structure, insinuating that defects are the culprit.  相似文献   

11.
一维La(OH)3纳米棒具有特殊的电子结构和多功能特性,特别是作为半导体光催化剂引起了人们极大的兴趣.但La(OH)3禁带宽度较大,且只能吸收紫外光,所以光催化效率较低,可见光利用能力较差,限制了La(OH)3的实际应用.因此,需要开发一种高效的改进方法来提高La(OH)3的可见光催化性能.本课题组发展了一种有效的改进La(OH)3方法,通过简易的方法将BiOI纳米颗粒沉积在La(OH)3纳米棒上,有效增强了对可见光的吸收能力和光生载流子的分离能力.本文采用X射线衍射(XRD)、透射电镜(TEM)、扫描电镜(SEM)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光光谱(PL)、光电子能谱(XPS)、电子自旋共振(ESR)、N2吸附和元素分析等手段研究了BiOI@La(OH)3纳米棒异质结的构建原理及增强可见光催化性能的原因.XRD和XPS结果表明,通过简易化学沉积法原位构建了BiOI@La(OH)3异质结,并且在异质结中没有杂相生成.由SEM图像可见,原始La(OH)3由分散的一维纳米棒组成,平均直径为30–50 nm.通过BiOI与La(OH)3表面的紧密接触成功构建异质结,但BiOI纳米颗粒未改变La(OH)3纳米棒的形貌.由TEM和HRTEM图像可见,La(OH)3纳米棒的平均长度为30–50 nm,并且在BiOI@La(OH)3异质结中可以清晰看出BiOI和La(OH)3之间紧密接触的界面和晶格间距.N2物理吸附结果显示,随着BiOI量的增加,BiOI@La(OH)3异质结的比表面积增加,但孔体积未现明显变化.UV-Vis DRS结果显示,引入BiOI后明显促进了La(OH)3对可见光的吸收能力和利用效率,从而有利于增强可见光催化活性.通过理论计算分别得到BiOI和La(OH)3的价带和导带位置,表明具有非常匹配的能带结构可以促进BiOI光生电子的有效转移.可见光催化去除NO测试结果表明,BiOI@La(OH)3异质结的光催化活性高达50.5%,明显优于BiOI和La(OH)3.ESR测试结果显示,BiOI@La(OH)3异质结可见光催化活性中起主要作用的活性物种是?OH.结合表征结果,BiOI@La(OH)3纳米棒异质结可见光催化性能增强的原因主要有三个:(1)BiOI@La(OH)3异质结增大的比表面积有利于反应物和产物在催化剂表面扩散,同时可提供更多活性位点参与光催化反应;(2)禁带宽度影响光催化效率,当BiOI与La(OH)3达到合适比例时,既可以促进可见光吸收,也可以使光生电子具有较强还原能力;(3)BiOI@La(OH)3异质结有利于光生载流子的分离,从而显著提高其光催化活性.  相似文献   

12.
《中国化学快报》2022,33(9):4385-4388
The BiOCl (BOC) synthesized by the water bath heating method was treated with sodium borohydride (NaBH4) to introduce oxygen vacancies (OVs). At the same time, Au nanoparticles were loaded to prepare a series of Au/BiOCl samples with different ratios. OVs and Au nanoparticles can promote the light absorption of host photocatalyst in the visible region. The calculated work function of BiOCl and Au can verify the existence of Ohmic contact between the interface of them, which is conducive to the separation of charge carriers. Through a series of photoelectric tests, it was verified experimentally that the separation of charge carriers is indeed enhanced. The high-energy hot electrons produced by Au under the surface plasmon resonance (SPR) effect can increase the counts of electrons to participate in the CO2 reduction reaction. Especially for 1.0%-Au/BOC, the yields of CO can reach 43.16 µmol g?1 h?1, which is 6.6 times more than that of BOC. Therefore, loading precious metal on semiconductors is an effective strategy to promote the photocatalytic performance of CO2 reduction reactions.  相似文献   

13.
Yang  Jie  Gao  Ge  Zhu  Zhi  Yu  Xiuna 《Research on Chemical Intermediates》2022,48(6):2313-2323

This study prepared a biochar-based photocatalyst (Co–Al LDH–C) via facile ultrasonic-assisted solvent treatment. The Co–Al LDH–C photocatalyst shows better photocatalytic activity in CO2 reduciton than the pure Co–Al LDH without biochar modification. The Co–Al LDH–C affords a CO generation rate of 29.2 µmol g?1. The enhanced CO2 reduction activity is attributed to the biochar in Co–Al LDH enhanced the light absorption property and separation efficiency of the charge carriers. Additionally, a mechanism insight of Co–Al LDH reduction CO2 is also investigated by a series of characterizations and experiments results. This work offers a new insight for CO2 reduction by waste utilization of biomass and improved the performance of Co–Al LDH, and extends the broad potential application of biochar-based photocatalyst in the photocatalytic conversion from solar to carbon resource.

  相似文献   

14.
TiO2 photocatalysts have been widely studied and applied for removing bacteria, but its antibacterial efficiency is limited to the ultraviolet (UV) range of the solar spectrum. In this work, we use the gold (Au) nanorods to enhance the visible and near-infrared (NIR) light absorption of TiO2 NBs, a typical UV light photocatalyst, thus the enhancement of its full solar spectrum (UV, visible and NIR) photocatalytic antibacterial properties is achieved. Preliminary surface plasmon resonance (SPR) enhancement photocatalytic antibacterial mechanism is suggested. On one hand, transverse and longitudinal SPR of Au NRs is beneficial for visible and NIR light utilization. On the other hand, Au NRs combined with TiO2 NBs to form the heterostructure, which can improve the photogenerated carrier separation and direct electron transfer increases the hot electron concentration while Au NRs as the electron channel can well restrain charge recombination, finally produces the high yield of radical oxygen species and exhibits a superior antibacterial efficiency. Furthermore, we design a sterilization file cabinet with Au NR/TiO2 NB heterostructures as the photocatalytic coating plates. Our study reveals that Au NR/TiO2 NB heterostructure is a potential candidate for sterilization of bacteria and archives protection.  相似文献   

15.
Rising atmospheric levels of carbon dioxide and the depletion of fossil fuel reserves raise serious concerns about the ensuing effects on the global climate and future energy supply. Utilizing the abundant solar energy to convert CO2 into fuels such as methane or methanol could address both problems simultaneously as well as provide a convenient means of energy storage. In this Review, current approaches for the heterogeneous photocatalytic reduction of CO2 on TiO2 and other metal oxide, oxynitride, sulfide, and phosphide semiconductors are presented. Research in this field is focused primarily on the development of novel nanostructured photocatalytic materials and on the investigation of the mechanism of the process, from light absorption through charge separation and transport to CO2 reduction pathways. The measures used to quantify the efficiency of the process are also discussed in detail.  相似文献   

16.
Harnessing solar energy and converting it into renewable fuels by chemical processes, such as water splitting and carbon dioxide (CO2) reduction, is a highly promising yet challenging strategy to mitigate the effects arising from the global energy crisis and serious environmental concerns. In recent years, covalent organic framework (COF)-based materials have gained substantial research interest because of their diversified architecture, tunable composition, large surface area, and high thermal and chemical stability. Their tunable band structure and significant light absorption with higher charge separation efficiency of photoinduced carriers make them suitable candidates for photocatalytic applications in hydrogen (H2) generation, CO2 conversion, and various organic transformation reactions. In this article, we describe the recent progress in the topology design and synthesis method of COF-based nanomaterials by elucidating the structure-property correlations for photocatalytic hydrogen generation and CO2 reduction applications. The effect of using various kinds of 2D and 3D COFs and strategies to control the morphology and enhance the photocatalytic activity is also summarized. Finally, the key challenges and perspectives in the field are highlighted for the future development of highly efficient COF-based photocatalysts.  相似文献   

17.
Ideal solar‐to‐fuel photocatalysts must effectively harvest sunlight to generate significant quantities of long‐lived charge carriers necessary for chemical reactions. Here we demonstrate the merits of augmenting traditional photoelectrochemical cells with plasmonic nanoparticles to satisfy these daunting photocatalytic requirements. Electrochemical techniques were employed to elucidate the mechanics of plasmon‐mediated electron transfer within Au/TiO2 heterostructures under visible‐light (λ>515 nm) irradiation in solution. Significantly, we discovered that these transferred electrons displayed excited‐state lifetimes two orders of magnitude longer than those of electrons photogenerated directly within TiO2 via UV excitation. These long‐lived electrons further enable visible‐light‐driven H2 evolution from water, heralding a new photocatalytic paradigm for solar energy conversion.  相似文献   

18.
半导体/石墨烯复合光催化剂的制备及应用   总被引:1,自引:0,他引:1  
首先分析了石墨烯和半导体光催化剂的特点,以及二者复合后可能具有的优越性质,接着介绍了石墨烯和半导体复合光催化剂的制备方法,归纳了石墨烯增强半导体光催化的机理,然后阐述了复合光催化剂在降解有机污染物、光催化分解水产氢、光催化还原CO2制有机燃料和光催化灭菌四个典型的应用,最后对半导体/石墨烯复合光催化剂未来的发展趋势提出了展望.  相似文献   

19.
Hierarchical FeCoS2–CoS2 double-shelled nanotubes have been rationally designed and constructed for efficient photocatalytic CO2 reduction under visible light. The synthetic strategy, engaging the two-step cation-exchange reactions, precisely integrates two metal sulfides into a double-shelled tubular heterostructure with both of the shells assembled from ultrathin two-dimensional (2D) nanosheets. Benefiting from the distinctive structure and composition, the FeCoS2–CoS2 hybrid can reduce bulk-to-surface diffusion length of photoexcited charge carriers to facilitate their separation. Furthermore, this hybrid structure can expose abundant active sites for enhancing CO2 adsorption and surface-dependent redox reactions, and harvest incident solar irradiation more efficiently by light scattering in the complex interior. As a result, these hierarchical FeCoS2–CoS2 double-shelled nanotubes exhibit superior activity and high stability for photosensitized deoxygenative CO2 reduction, affording a high CO-generating rate of 28.1 μmol h−1 (per 0.5 mg of catalyst).  相似文献   

20.
Graphitic carbon nitride (g-C3N4) is a remarkable semiconductor catalyst that has attracted widespread attention as a visible light photo-responsive, metal-free, low-cost photocatalytic material. Pristine g-C3N4 suffers fast recombination of photogenerated electron-hole pairs, low surface area, and insufficient visible light absorption, resulting in low photocatalytic efficiency. This review presents the recent progress, perspectives, and persistent challenges in the development of g-C3N4-based photocatalytic materials. Several approaches employed to improve the visible light absorption of the materials including metal and non-metal doping, co-doping, and heterojunction engineering have been extensively discussed. These approaches, in general, were found to decrease the material’s bandgap, increase the surface area, reduce charge carrier recombination, and promote visible light absorption, thereby enhancing the overall photocatalytic performance. The material has been widely used for different applications such as photocatalytic hydrogen production, water splitting, CO2 conversion, and water purification. The work has also identified various limitations and weaknesses associated with the material that hinders its maximum utilization under visible illumination and presented state-of-the-art solutions that have been reported recently. The summary presented in this review would add an invaluable contribution to photocatalysis research and facilitate the development of efficient visible light-responsive semiconducting materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号