首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To acquire substantial electrochemical signals of guanine-GUA and adenine-ADE present in deoxyribonucleic acid-DNA, it is critical to investigate innovative electrode materials and their interfaces. In this study, gold-loaded boron-doped graphene quantum dots (Au@B-GQDs) interface was prepared via ultrasound-aided reduction method for monitoring GUA and ADE electrochemically. Transmission electron microscopy-TEM, Ultraviolet–Visible spectroscopy-UV–Vis, Raman spectroscopy, X-ray photoelectron spectroscopy-XPS, cyclic voltammetry-CV, and differential pulse voltammetry-DPV were used to examine the microstructure of the fabricated interface and demonstrate its electrochemical characteristics. The sensor was constructed by depositing the as-prepared Au@B-GQDs as a thin layer on a glassy carbon-GC electrode by the drop-casting method and carried out the electrochemical studies. The resulting sensor exhibited a good response with a wide linear range (GUA = 0.5–20 μM, ADE = 0.1–20 μM), a low detection limit-LOD (GUA = 1.71 μM, ADE = 1.84 μM), excellent sensitivity (GUA = 0.0820 µAµM−1, ADE = 0.1561 µAµM−1) and selectivity with common interferents results from biological matrixes. Furthermore, it seems to have prominent selectivity, reproducibility, repeatability, and long-lasting stability. The results demonstrate that the fabricated Au@B-GQDs/GC electrode is a simple and effective sensing platform for detecting GUA and ADE in neutral media at low potential as it exhibited prominent synergistic impact and outstanding electrocatalytic activity corresponding to individual AuNPs and B-GQDs modified electrodes.  相似文献   

2.
Cadmium selenide/graphene quantum dots (CdSe/GQDs) nanocatalyst with small band gap energy and a large specific surface area was produced via a facile three-step sonochemical-hydrothermal process. The features of the as-prepared CdSe, GQDs and CdSe/GQDs samples were characterized by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), diffuse-reflectance spectrophotometer (DRS), and Brunauer–Emmett–Teller (BET) analysis. The sonocatalytic activity of the synthesized CdSe/GQDs was effectively accelerated compared with that of pure CdSe nanoparticles in degradation of methylene blue (MB). The influence of the CdSe/GQDs dosage (0.25–1.25 g/L), initial MB concentration (20–30 mg/L), initial solution pH (3–12), and ultrasonic output power (200–600 W/L) were examined on the sonocatalytic treatment of MB aqueous solutions. The degradation efficiency (DE%) of 99% attained at 1 g/L of CdSe/GQDs, 20 mg/L of MB, pH of 9, and an output power of 200 W/L at 90 min of ultrasonic irradiation. Furthermore, DE% increased with addition of K2S2O8 and H2O2 as the enhancers via producing more free radicals. However, addition of sulfate, carbonate, and chloride as radical sweeper decreased DE%. Furthermore, well-reusability of the CdSe/GQDs sonocatalyst was demonstrated for 5 successive runs and some of the sonocatalytic generated intermediates were indicated by GC–MS analysis.  相似文献   

3.
Potentiostatic anodization of commercially pure, 50 µm-thick titanium (Ti) foil was performed in aqueous, phosphate electrolytes at increasing experimental timeframes at a fixed applied potential for the synthesis of titania nanotube arrays (TNAs). High resolution scanning electron microscopy images, combined with energy dispersive spectroscopy and x-ray diffraction spectra reveal that anodization of the Ti foil in a 1 M NaF+0.5 M H3PO4 electrolyte for 4 h yields a titanate surface with pore diameters ranging between 100 and 500 nm. The presence of rods on the Ti foil surface with lengths exceeding 20 µm and containing high concentrations of phosphor on the exterior was also detected at these conditions, along with micro-sized coral reef-like titanate balls. We propose that the formation of these structures play a major role during the anodization process and impedes nanotube growth during the anodization process. High spatially resolved scanning transmission electron microscopy-electron energy loss spectroscopy (STEM-EELS) performed along the length of a single anodized TiO2 nanotube reveals a gradual evolution of the nanotube crystallinity, from a rutile-rich bottom to a predominantly anatase TiO2 structure along its length.  相似文献   

4.
Fe3O4/hydroxyapatite/graphene quantum dots (Fe3O4/HAP/GQDs) nanocomposite was synthesized and used as a novel magnetic adsorbent. This nanocomposite was characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, and magnetization property. The Fe3O4/HAP/GQDs was applied to pre-concentrate copper residues in Thai food ingredients (so-called “Tom Yum Kung”) prior to determination by inductively coupled plasma-atomic emission spectrometry. Based on ultrasound-assisted extraction optimization, various parameters affecting the magnetic solid-phase extraction, such as solution pH, amount of magnetic nanoparticles, adsorption and desorption time, and type of elution solvent and its concentration were evaluated. Under optimal conditions, the linear range was 0.05–1500 ng mL−1 (R2 > 0.999), limit of detection was 0.58 ng mL−1, and limit of quantification was 1.94 ng mL−1. The precision, expressed as the relative standard deviation of the calibration curve slope (n = 5), for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Cu for real samples was ranged between 83.5% and 104.8%. This approach gave the enrichment factor of 39.2, which guarantees trace analysis of Cu residues. Therefore, Fe3O4/HAP/GQDs can be a potential and suitable candidate for the pre-concentration and separation of Cu from food samples. It can easily be reused after treatment with deionized water.  相似文献   

5.
MMoO4 (M=Ca, Ba) particles were synthesized by a metathetic reaction in ethylene glycol assisted by cyclic microwave irradiation followed by further heat-treatment. The MMoO4 (M=Ca, Ba) particles were well crystallized after heat-treatment at 400–600 °C for 3 h. The microstructures exhibited fine morphologies with sizes of 0.5–1 μm and 1.5–2 μm for the CaMoO4 and BaMoO4 particles, respectively. The synthesized MMoO4 (M=Ca, Ba) particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. The optical properties were examined by photoluminescence emission and Raman spectroscopy.  相似文献   

6.
7.
The present investigation describes the addition of iron (Fe) in order to improve the supercapacitive properties of MnO2 electrodes using galvanostatic mode. These amorphous worm like Fe: MnO2 electrodes are characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR) and wettability test. The supercapacitive properties of MnO2 and Fe: MnO2 electrodes are investigated using cyclic voltammetry, chronopotentiometry and impedance techniques. It is seen that the supercapacitance increases with increase in Fe doping concentration and achieved a maximum of 173 F g?1 at 2 at% Fe doping. The maximum supercapacitance obtained is 218 F g?1 for 2 at% Fe: MnO2 electrode. This hydrous binary oxide exhibited ideal capacitive behavior with high reversibility and high pulse charge–discharge property between ?0.1 and +0.9 V/SCE in 1 M Na2SO4 electrolyte indicating a promising electrode material for electrochemical supercapacitors.  相似文献   

8.
D.S. Choi  D.H. Kim 《Surface science》2010,604(19-20):1737-1741
We have investigated the surface structure of the Al/W(110) surface using low energy electron diffraction (LEED) and low energy ion scattering spectroscopy (ISS). We observe a p(2 × 1) double domain LEED image for the 0.5 ML Al/W(110) surface at annealing temperature 850 °C. We found that 0.5 ML Al atoms cover on the W(110) surface uniformly but do not form 3 or 2-dimensional islands. We also measured the Al adsorption site at the Al/W(110)-p(2 × 1) surface using ISS. We found that Al atoms adsorbed at the center of the bridge site. The height of the adsorbed Al atoms is determined to be 2.18 ± 0.15 Å above the W surface layer.  相似文献   

9.
Nanosized copper aluminate (CuAl2O4) spinel particles have been prepared by a precursor approach with the aid of ultrasound radiation. Mono-phasic copper aluminate with a crystallite diameter of 17 nm along the (3 1 1) plane was formed when the products were synthesized using Cu(NO3)2·6H2O and Al(NO3)3·9H2O as starting materials, with urea as a precipitation agent at a concentration of 9 M. The reaction was carried out under ultrasound irradiation at 80 °C for 4 h and a calcination temperature of 900 °C for 6 h. The synthesized copper aluminate particles and the effect of different processing conditions such as the copper source, precipitation agents, sonochemical reaction time, calcination temperature and time were analyzed and characterized by the techniques of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transformation infrared spectroscopy (FT–IR).  相似文献   

10.
The oxidation of Fe(111) was studied using Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), ion scattering spectroscopy (ISS) and scanning tunnelling microscopy (STM). Oxidation of the crystal was found to be a very fast process, even at 200 K, and the Auger O signal saturation level is reached within ~ 50 × 10? 6 mbar s. Annealing the oxidised surface at 773 K causes a significant decline in apparent surface oxygen concentration and produces a clear (6 × 6) LEED pattern, whereas after oxidation at ambient temperature no pattern was observed. STM results indicate that the oxygen signal was reduced due to the nucleation of large, but sparsely distributed oxide islands, leaving mainly the smooth (6 × 6) structure between the islands. The reactivity of the (6 × 6) layer towards methanol was investigated using temperature programmed desorption (TPD), which showed mainly decomposition to CO and CO2, due to the production of formate intermediates on the surface. Interestingly, this removes the (6 × 6) structure by reduction, but it can be reformed from the sink of oxygen present in the large oxide islands simply by annealing at 773 K for a few minutes. The (6 × 6) appears to be a relatively stable, pseudo-oxide phase, that may be useful as a model oxide surface.  相似文献   

11.
Nano-structure of a new 0D Pb(II) coordination supramolecular compound, [Pb4(8-Quin)6](ClO4)2(1), L = 8-HQuin = 8-hydroxyquinolin ligand has been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR) and elemental analyses. The structure of compound 1 was determined by single-crystal X-ray diffraction. The single crystal X-ray data of compound 1 implies that the Pb+2 ions are five coordinated. Each lead atom is coordinated to nitrogen and oxygen atoms of 8-hydroxyquinolin ligand. Topological analysis shows that the compound 1 is 1,2,3,4,4M12-1net. Nanoparticles of lead(II) oxide have been prepared by calcination of lead(II) coordination polymer at 500 °C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and IR spectroscopy.  相似文献   

12.
Model electrodes consisting of platinum dots with a mean diameter of (30 ± 5) nm and heights of 3–5 nm upon highly oriented pyrolytic graphite (HOPG) were prepared by electron beam lithography and subsequent sputtering. The Pt nanodot arrays were stable during scanning tunnelling microscopy (STM) measurements in air and in sulphuric acid electrolyte, indicating the presence of “anchors”, immobilising the dots on the HOPG surface.Electrochemical STM was used to visualise potential induced Pt, carbon and Pt-influenced carbon corrosion in situ in 0.5 M sulphuric acid under ambient conditions. Potentiostatic hold experiments show that the Pt dots start to disappear at electrode potentials of E > 1.4 V vs. SHE. With increasing time and potential a hole pattern congruent to the original dot pattern appears on the HOPG basal planes. Corrosion and peeling of the HOPG substrate could also be followed in situ.Dissolution of Pt dots appears to be accelerated for potential cycling experiments compared to the potential hold statistics.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(6):1933-1938
In this study, manganese oxide (MnO2) nanoparticles were synthesized by sonochemical reduction of KMnO4 using polyethylene glycol (PEG) as a reducing agent as well as structure directing agent under room temperature in short duration of time and characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) analysis. A supercapacitor device constructed using the ultrasonically-synthesized MnO2 nanoparticles showed maximum specific capacitance (SC) of 282 Fg−1 in the presence of 1 M Ca(NO3)2 as an electrolyte at a current density of 0.5 mA cm−2 in the potential range from 0.0 to 1.0 V and about 78% of specific capacitance was retained even after 1000 cycles indicating its high electrochemical stability.  相似文献   

14.
Nanoparticles of two zinc(II) coordination supramolecule compounds (CSCs), [Zn(L)Cl2] (1) and [Zn(L)Br2] (2) L = 1,10-phen = 1,10-phenanthroline ligand, have been synthesized by use of a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), Fourier transform infrared (FTIR) spectroscopy and elemental analyses. The single crystal X-ray data of compounds 1 and 2 imply that the Zn+2 ions are four coordinated. Topological analysis shows that the compound 1 and 2 are new topology for net: 1,3M4-1. Nanoparticles of zinc(II) oxide have been prepared by calcination of two different zinc(II) CPs at 500 °C that were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and IR spectroscopy.  相似文献   

15.
Tin (Sn) induced (1 × 2) reconstructions on GaAs(100) and InAs(100) substrates have been studied by low energy electron diffraction (LEED), photoelectron spectroscopy, scanning tunneling microscopy/spectroscopy (STM/STS) and ab initio calculations. The comparison of measured and calculated STM images and surface core-level shifts shows that these surfaces can be well described with the energetically stable building blocks that consist of Sn–III dimers. Furthermore, a new Sn-induced (1 × 4) reconstruction was found. In this reconstruction the occupied dangling bonds are closer to each other than in the more symmetric (1 × 2) reconstruction, and it is shown that the (1 × 4) reconstruction is stabilized as the adatom size increases.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(4):1366-1373
Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T = 285 °C) or sonolysis (20 kHz, I = 32 W cm−2, Pac = 0.46 W mL−1, T = 200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4–6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m2 g−1 depending on synthesis conditions. The use of Barrett–Joyner–Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5 %wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C.  相似文献   

17.
J. Yuhara  K. Ito  T. Matsui 《Surface science》2012,606(1-2):115-119
The surface composition and morphology of Fe(111) have been examined through a combined analysis that includes low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). The preferential segregation of sulfur has been clearly identified by AES upon annealing. The STM images exhibit numerous triangular pits of various sizes, and the LEED patterns show diffused n × 1 spots. The triangular pits reveal a Sierpinski gasket fractal. For sulfur-free Fe(111), nitrogen segregates to the surface upon annealing, forming a 4√3 × 4√3 superstructure that is identified by LEED patterns and STM images. The STM images show nanoscale triangular clusters regularly aligned in a hexagonal 4√3 × 4√3 configuration. Ultra-thin chromium film deposited on a nitrogen-segregated Fe(111) surface with post-annealing induces further nitrogen segregation, resulting in the formation of triangular pyramid-shaped CrN nanoclusters.  相似文献   

18.
D. Kato  T. Matsui  J. Yuhara 《Surface science》2010,604(15-16):1283-1286
The oxidation of submonolayer zinc films on Rh(100) surface by O2 gas has been studied using low-energy electron diffraction (LEED), Auger electron spectroscopy (AES), and scanning tunneling microscopy (STM). With a zinc coverage of 0.8 ML, an atomically flat ultra-thin zinc oxide film formed at an oxygen partial pressure of 2 × 10? 8 mbar and a temperature of 150 °C. The zinc oxide film showed a c(16 × 2) LEED pattern. The high resolution STM image of the zinc oxide film showed single dotted spots and double dotted spots arranged linearly and periodically along the [01¯1] direction. We propose an atomic arrangement model of the film accounting for the LEED pattern, the STM image, and the atomic arrangement of the bulk ZnO(0001) surface.  相似文献   

19.
A mid-infrared carbon monoxide (CO) sensor system based on a dual-channel differential detection method was developed using a broadband light source in the 4.60 µm wavelength region and a single-reflection spherical optical chamber with ∼0.373 m absorption path length. CO detection was realized by targeting the wideband strong absorption lines within 4.55–4.65 µm. A dual-channel pyroelectric detector as well as a self-developed digital signal processor (DSP) based orthogonal lock-in amplifier was employed to process CO sensing signal. A minimum detection limit of ∼0.5 ppm in volume (ppmv) was achieved with a measurement time of 6 s, based on an Allan deviation analysis of the sensor system. The response time (1000  0 ppmv) was determined to be ∼7 s for the CO sensor operation. Due to the characteristics of low detection limit, fast response time and high cost performance, the proposed sensor has relatively good prospect in coal-mining operation.  相似文献   

20.
Spinel-type manganese oxide/porous carbon (Mn3O4/C) nanocomposite powders have been simply prepared by a thermal decomposition of manganese gluconate dihydrate under an Ar gas flow at above 600 °C. The structure and texture of the Mn3O4/C nanocomposite powders are investigated by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS) equipped scanning transmission electron microscopy (STEM), transmission electron microscopy (TEM), selected area-electron diffraction (SA-ED), thermogravimetric and differential thermal analysis (TG-DTA) and adsorption/desorption of N2 gas at ?196 °C. The electrochemical properties of the nanocomposite powders in 1 M KOH aqueous solution are studied, focusing on the relationship between their structures and electrochemical capacitance.In the nanocomposite powders, Mn3O4 nano particles approximately 5 nm in size are dispersed in a porous carbon matrix. The nanocomposite powders prepared at 800 °C exhibit a high specific capacitance calculated from cyclic voltammogram of 350 and 600 F g?1 at a sweep rate of 1 and 0.1 mV s?1, respectively. The influence of the heating temperature on the structure and the electrochemical properties of nanocomposite powders is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号