首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The oil in water (o/w) emulsions were prepared using aniline dissolved in toluene and LiCoO2 particles as stabilizers (Pickering emulsions). Pickering emulsions are stabilized by adsorbed solid particles instead of emulsifier molecules. The mean droplet diameter of emulsions was controlled by the mass ratio M (oil)/M (solid particles). The emulsions showed great stability during 3 days. The composite materials containing LiCoO2 and the conductive polymer polyaniline (PANI) have been prepared by means of polymerization of aniline emulsion stabilized by LiCoO2 particles. The composite materials were characterized by nanosphere and nanofiber-like structures. The nanofiber-like morphology of the powdered material was distinctly different of the morphologies of the parent materials. The electrochemical reactivity of PANI/LiCoO2 composites as positive electrode in a lithium battery was examined during lithium ion deinsertion and insertion by galvanostatic charge–discharge testing; PANI/LiCoO2 (1:4) composite materials exhibited the best electrochemical performance by increasing the reaction reversibility and capacity compared to that of the pristine LiCoO2 cathode. The first discharge capacity of PANI/LiCoO2 (1:4) was 167 mAh/g, while that of LiCoO2 was136 mAh/g.  相似文献   

2.
In this study, hemp seed oil (HSO) emulsions stabilized with hemp seed protein (HPI) were prepared and treated with high intensity ultrasonic (HIU). The effects of different treatment powers (0, 150, 300, 450, 600 W) on the properties, microstructure and stability of emulsions were investigated. HIU-treated emulsions showed improved emulsifying activity index and emulsifying stability index, reduced particle size, and increased absolute values of ζ-potential, with the extreme points of these indices occurring at a treatment power of 450 W. Here, the emulsion showed the best dispersion and the smallest particle size in fluorescence microscopy observation, with the highest adsorbed protein content (30.12%), and the highest tetrahydrocannabinol (THC) retention rate (87.64%). The best thermal and oxidative stability of the emulsions were obtained under HIU treatment with a power of 450 W. The D43 and the peroxide values (POV) values after 30 d storage were the smallest at 985.74 ± 64.89 nm and 4.6 μmol/L, respectively. Therefore, 450 W was optimal HIU power to effectively improve the properties of HPI-stabilized HSO emulsion and promote the application of HSO and its derivatives in food processing production.  相似文献   

3.
This study demonstrated the influences of ultrasound-assisted multilayer Pickering double emulsion capsules on the pasteurization and gastrointestinal digestive viability of probiotic (L. plantarum) strain liquid. Firstly, the role of ultrasonic homogenization on the morphology of W1/O/W2 double emulsions were studied. The double emulsion formed by ultrasonic intensity at 285 W had a single and narrow distribution with smallest droplet size. The double emulsion particles were then coated with chitosan(Chi), alginate (Alg), and CaCl2(Ca). The multilayer emulsion after pasteurization and gastrointestinal digestion both had the highest viability at 5 coating layers, but its particle size (108.65 μm) exceeded the limit of human oral sensory (80 μm). It could be noted that the deposition of 3–4 layers of coating had similar activity after pasteurization/GIT digestion. And droplets with 3 layers of coating were the minimum and most available formulation for encapsulated probiotics (L. plantarum). Hence, the results suggest that the use of ultrasound-assisted multilayer emulsions encapsulated with probiotics in granular food and pharmaceutical applications is a promising strategy.  相似文献   

4.
This study was designed to compare the properties of myofibrillar protein (MP) stabilized soybean oil-in-water emulsions fabricated by ultrasound-assisted emulsification (UAE), high-pressure homogenization (HPH) and high-speed homogenization (HSH). The emulsion properties, droplet characteristics, interfacial proteins, protein exposure extent, microrheological properties, multiple light scattering results, and 7 d storage stabilities of the three emulsions were specifically investigated. Our results indicate that UAE and HPH were better emulsification methods than HSH to obtain high-quality emulsions with higher emulsifying activity index (UAE 20.73 m2·g−1, HPH 11.76 m2·g−1 and HSH 6.80 m2·g−1), whiteness (UAE 81.05, HPH 80.67 and HSH 74.09), viscosity coefficient (UAE 0.44 Pa·sn, HPH 0.49 Pa·sn and HSH 0.22 Pa·sn), macroscopic viscosity index (UAE 2.31 nm−2·s, HPH 0.38 nm−2·s and HSH 0.34 nm−2·s), and storage stability, especially for the UAE. Furthermore, UAE was a more efficient emulsification method than HPH to prepare the fine MP-soybean oil emulsion. The protein-coated oil droplets were observed in the three emulsions. The emulsion droplet size of the UAE-fabricated emulsion was the lowest (0.15 μm) while the interfacial protein concentration (93.37%) and the protein exposure extent were the highest among the three emulsions. During the 7 d storage, no separation was observed for the UAE-fabricated emulsion, while the emulsions fabricated by HPH and HSH were separated after storage for 5 d and 2 h. Therefore, this work suggests that UAE could be a better method than HPH and HSH to fabricate MP-soybean oil emulsion.  相似文献   

5.
This study aimed to evaluate the potential of time-dependent (0, 15, 30, 60, 120 min) treatment of porcine-derived myofibrillar proteins (MPs) with high-intensity ultrasound (HIU) for utilizing them as a Pickering stabilizer and decipher the underlying mechanism by which HIU treatment increases the emulsification and dispersion stability of MPs. To accomplish this, we analyzed the structural, physicochemical, and rheological properties of the HIU-treated MPs. Myosin heavy chain and actin were observed to be denatured, and the particle size of MPs decreased from 3,342.7 nm for the control group to 153.9 nm for 120 min HIU-treated MPs. Fourier-transformed infrared spectroscopy and circular dichroism spectroscopy confirmed that as the HIU treatment time increased, α-helical content increased, and β-sheet decreased, indicating that the protein secondary/tertiary structure was modified. In addition, the turbidity, apparent viscosity, and viscoelastic properties of the HIU-treated MP solution were decreased compared to the control, while the surface hydrophobicity was significantly increased. Analyses of the emulsification properties of the Pickering emulsions prepared using time-dependent HIU-treated MPs revealed that the emulsion activity index and emulsion stability index of HIU-treated MP were improved. Confocal laser scanning microscopy images indicated that small spherical droplets adsorbed with MPs were formed by HIU treatment and that dispersion stabilities were improved because the Turbiscan stability index of the HIU-treated group was lower than that of the control group. These findings could be used as supporting data for the utilizing porcine-derived MPs, which have been treated with HIU for appropriate time periods, as Pickering stabilizers.  相似文献   

6.
Complex wax@water@SiO2 multicore capsules are synthesized by combining sol‐gel process and formulation of wax‐in‐water‐in‐oil double emulsions. The inner direct wax‐in‐water emulsion is stabilized with modified silica nanoparticles using limited coalescence occurring in Pickering emulsions. In a second step, this obtained liquid dispersion is emulsified in poly‐dimethylsiloxane (PDMS) using a non ionic surfactant to stabilize the second water/oil interface. Finally, a sol‐gel process is employed to mineralize the as‐generated double emulsions giving rise to wax@water@SiO2 multicore capsules. Due to the wax volume expansion through melting, the as‐synthesized multicore capsules offer thermally stimulated release that is enhanced when surfactant is added in the surrounding continuous oil phase. In addition, the melted wax release can be tuned from a one‐step process to a more sequential dropping mode by varying the mineral precursor tetraethoxy‐orthosilane (TEOS) concentration in the oily phase during mineralization.  相似文献   

7.
Encapsulation of enzymes with enhanced activity and recyclability in water‐in‐oil Pickering emulsions is a simple and efficient method for their immobilization; however, the effect produced by the structure of colloidal particles on the stabilization of the Pickering emulsion for enzyme catalysis has not been investigated in detail. In this study, four types of hydrophobic Fe3O4@SiO2 nanoparticles (NPs) with similar chemical compositions, particle diameters, but different surface characteristics have been prepared and utilized for enzyme encapsulation in various water‐in‐oil magnetic Pickering emulsions, after which the relationship between NPs structure, size of emulsions droplets, and enzyme activity is examined. The obtained results indicate that (i) the more hydrophobic Fe3O4@SiO2 NPs cause the higher enzyme activity; (ii) the higher hydrophobicity of oil phase also increases the enzyme activity, especially for Fe3O4@w‐SiO2 NPs which form in the solvent of water. The results are mainly attributed to the higher specific surface area of emulsion droplets and interfacial mass transfer of substrates through the interfaces of droplets. The reported data provide new insights into the mechanism of stabilization of Pickering emulsions for enhancing enzyme activity and demonstrate efficient theoretical references for enzyme immobilization and synthesis of stable and active biocatalysts with high recyclability.  相似文献   

8.
An ultrasonic technique was applied to formulation of two-phase water-in-paraffin oil emulsions loading a high-molecular polysaccharide chitosan (CS) and stabilized by an oil-soluble surfactant (Span80) at different operational conditions. The influence of chitosan molecular properties, phase volume ratio (φw), Span80 volume fraction (φs) and ultrasonic processing parameters were systemically investigated on the basis of mean droplet diameter (MDD) and polydispersity index (PDI) of emulsions. It was observed that the molecular weight (Mw) of CS was an important influential factor to MDD due to the non-Newtonian properties of CS solution varying with Mw. The minimum MDD of 198.5 nm with PDI of 0.326 was obtained with ultrasonic amplitude of 32% for 15 min at an optimum φw of 35%, φs of 8%, probe position of 2.2 cm to the top of emulsion, while CS with Mw of 400 kDa and deacetylation degree of 84.6% was used. The rise of emulsion viscosity and the reduction of negative zeta potential at φw increasing from 5% to 35% were beneficial to obtain finer droplets and more uniform distribution of emulsions, and emulsion viscosity could be represented as a monotonically-decreasing power function of MDD at the same φw. FTIR analysis indicated that the molecular structure of paraffin oil was unaffected during ultrasonication. Moreover, the emulsions exhibited a good stability at 4 °C with a slight phase separation at 25 °C after 24 h of storage. By analyzing the evolution of MDD, PDI and sedimentation index (SI) with time, coalescence model showed better fitting results as comparison to Ostwald ripening model, which demonstrated that the coalescence or flocculation was the dominant destabilizing mechanism for such W/O emulsions encapsulating CS. This study may provide a valuable contribution for the application of a non-Newtonian macromolecule solution as dispersed phase to generate nano-size W/O emulsions via ultrasound, and widen knowledge and interest of such emulsions in the functional biomaterial field.  相似文献   

9.
Ultrasonication may be a cost-effective emulsion formation technique, but its impact on emulsion final structure and droplet size needs to be further investigated. Olive oil emulsions (20 wt%) were formulated (pH  7) using whey protein (3 wt%), three kinds of hydrocolloids (0.1–0.5 wt%) and two different emulsification energy inputs (single- and two-stage, methods A and B, respectively). Formula and energy input effects on emulsion performance are discussed. Emulsions stability was evaluated over a 10-day storage period at 5 °C recording the turbidity profiles of the emulsions. Optical micrographs, droplet size and viscosity values were also obtained. A differential scanning calorimetric (DSC) multiple cool–heat cyclic method (40 to ?40 °C) was performed to examine stability via crystallization phenomena of the dispersed phase.Ultrasonication energy input duplication from 11 kJ to 25 kJ (method B) resulted in stable emulsions production (reduction of back scattering values, dBS  1% after 10 days of storage) at 0.5 wt% concentration of any of the stabilizers used. At lower gum amount samples became unstable due to depletion flocculation phenomena, regardless of emulsification energy input used. High energy input during ultrasonic emulsification also resulted in sub-micron oil-droplets emulsions (D50 = 0.615 μm compared to D50 = 1.3 μm using method A) with narrower particle size distribution and in viscosity reduction.DSC experiments revealed no presence of bulk oil formation, suggesting stability for XG 0.5 wt% emulsions prepared by both methods. Reduced enthalpy values found when method B was applied suggesting structural modifications produced by extensive ultrasonication. Change of ultrasonication conditions results in significant changes of oil droplet size and stability of the produced emulsions.  相似文献   

10.
Pickering emulsions are eco-friendly, stabilized by solid particles, and have an essential role in leading industries. Although Pickering emulations have found several applications, surprisingly few investigations have attempted to explore the effectiveness of various mechanical processes for its production. To fill these gaps, the present investigation comprehensively examined the application of various Pickering emulsion preparation processes such as rotor-stator homogenization emulsification (R-SH), ultrasonic emulsification, and their combined processes by using nano-silica particles. The influences of emulsification time and intensity on emulsion droplets' distribution were analyzed as indicative factors. The kerosene/water nano-silica Pickering emulsion was utilized for all assessments. The obtained results demonstrated that the main distribution peak of the emulsion prepared by R-SH occurred where the chord length was greater than 40 μm. Micro-scale nano-silica-aggregates generated large droplets, while the fine-emulsion fraction was significantly increased after ultrasonic treatment. The experimental results showed that the emulsion prepared only by ultrasound needed substantial power to form a Pickering emulsion since the oil phase was difficult to disperse in the water phase. Finally, it was concluded that preprocessing by R-SH could form a stable and uniform emulsion speedily, which is essential for ultrasound emulsion preparation.  相似文献   

11.
Traditional preparation of protein particles is usually complex and tedious, which is a major issue in the development of Pickering high internal phase emulsions (HIPEs). In this study, a facile and in-situ method for the preparation of food-grade Pickering HIPEs was developed using ultrasound pre-fractured casein flocs. The ultrasonic-treated casein protein and resulting Pickering HIPEs were characterised using particle size distribution, confocal laser scanning microscopy (CLSM), cryo-SEM, and rheological measurement. The results indicated that pH values of casein and ultrasonic power level were key parameters for casein protein dispersion into nanoparticles to form o/w Pickering HIPEs. In optimal conditions, the hexagons of emulsion droplets were close together, and the emulsions formed with ultrasonic caseins exhibited gel-like behaviour. Additionally, ultrasonic microscale-sized caseins (about 25 μm) disappeared upon the use of high speed homogenisation during the formation of HIPEs, while the chemical distribution revealed by confocal laser scanning microscopy indicated that the dispersive nanoparticles from casein proteins were evidently absorbed on the interface of HIPEs (cryo-SEM). These findings prove that ultrasound is an effective tool to loosen casein flocs to induce the in-situ formation of stabilised Pickering HIPEs. Overall, this work provides a green and facile route to convert edible oil into a soft solid, which has great potential for applications in biomedical materials, 3D printing technology, and various cosmetics.  相似文献   

12.
In this study, an emulsion stabilized by soy protein isolate (SPI)-pectin (PC) complexes was prepared to investigate the effects of high-intensity ultrasound (HIU) treatment (150–600 W) on the physicochemical properties, microstructure, and stability of emulsions. The results found that the emulsion treated at 450 W showed the best emulsion stability index (ESI) (25.18 ± 1.24 min), the lowest particle size (559.82 ± 3.17 nm), the largest ζ-potential absolute value (16.39 ± 0.18 mV), and the highest adsorbed protein content (27.31%). Confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) revealed that the emulsion aggregation was significantly improved by ultrasound treatment, and the average roughness value (Rq) was the smallest (10.3 nm) at 450 W. Additionally, HIU treatment reduced the interfacial tension and apparent viscosity of the emulsion. Thermal stability was best when the emulsion was treated at 450 W, D43 was minimal (907.95 ± 31.72 nm), and emulsion separation also improved. Consequently, the creaming index (CI) was significantly decreased compared to the untreated sample, indicating that the storage stability of the emulsion was enhanced.  相似文献   

13.
Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(4):1265-1274
This study reports on the process optimization of ultrasound-assisted, food-grade oil–water nanoemulsions stabilized by modified starches. In this work, effects of major emulsification process variables including applied power in terms of power density and sonication time, and formulation parameters, that is, surfactant type and concentration, bioactive concentration and dispersed-phase volume fraction were investigated on the mean droplet diameter, polydispersity index and charge on the emulsion droplets. Emulsifying properties of octenyl succinic anhydride modified starches, that is, Purity Gum 2000, Hi-Cap 100 and Purity Gum Ultra, and the size stability of corresponding emulsion droplets during the 1 month storage period were also investigated. Results revealed that the smallest and more stable nanoemulsion droplets were obtained when coarse emulsions treated at 40% of applied power (power density: 1.36 W/mL) for 7 min, stabilized by 1.5% (w/v) Purity Gum Ultra. Optimum volume fraction of oil (medium chain triglycerides) and the concentration of bioactive compound (curcumin) dispersed were 0.05 and 6 mg/mL oil, respectively. These results indicated that the ultrasound-assisted emulsification could be successfully used for the preparation of starch-stabilized nanoemulsions at lower temperatures (40–45 °C) and reduced energy consumption.  相似文献   

15.
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.  相似文献   

16.
Marigold flower petals are considered the richest source of lutein which possesses immense applications in the food and health sector. The study was undertaken to improve the stability of sunflower oil by enriching it with lutein extracted from marigold flower petals using safe and green technology. The extraction of lutein was optimized using Box-Behnken design by ultrasound-assisted extraction (UAE) employing sunflower oil as a solvent. The impact of three independent variables i.e., ultrasonic intensity, solid to solvent ratio, and extraction time were evaluated on the amount of lutein extracted and its antioxidant activity. Highest amount of lutein (21.23 mg/g) was extracted by employing ultrasonic intensity of 70 W/m2, extraction time of 12.5 min, and solid to solvent ratio of 15.75%. FT-IR spectra of lutein extracted by ultrasound and conventional extraction show similar peaks depicting that ultrasound does not have any impact on the functionality of lutein. Sunflower oil incorporated with lutein at 1000 PPM and the synthetic antioxidant (TBHQ) showed good oxidative stability than oil with 500 PPM lutein and no lutein during accelerated storage for a month. The oxidative stability was shown by different oil samples in the following order: TBHQ = 1000PPM lutein˃500PPM lutein ˃control oil. It was concluded that the ultrasound technique extracts lutein efficiently from marigold flowers and this lutein was effective in improving the oxidative stability of sunflower oil under accelerated storage conditions.  相似文献   

17.
In this work casein (CN) was used as a carrier system for the hydrophobic agent α-tocopherol (α-TOC), and an amphiphilic self-assembling micellar nanostructure was formed with ultrasound treatment. The interaction mechanism was detected with UV–Vis spectroscopy, fluorescence spectroscopy, proton spectra, and Fourier transform infrared spectroscopy (FTIR). The stability of the nanoparticles was investigated by using typical processing and storage conditions (thermal, photo, 20 ± 2 °C and 4 ± 2 °C). Oil-in-water emulsions containing the self-assembled nanoparticles and grape seed oil were prepared, and the effect of emulsion oxidation stability was studied using the accelerated Rancimat method. The results indicated that the UV–Vis spectra of α-TOC/CN nanoparticles complexes were different for ultrasonic treatments performed with different combinations of power (100, 200, 300 W) and time (5, 10, and 15 min). The results of UV–Vis fluorescence spectrum data indicated that the secondary structure of casein changed in the presence of α-TOC. The nanoparticles exhibited the chemical shifts of conjugated double bonds. Interactions between α-TOC and casein at different molar concentrations resulted in a quenching of the intrinsic fluorescence at 280 nm and 295 nm. Moreover, by performing FTIR deconvolution analysis and multicomponent peak modeling, the relative quantitative amounts of α-helix and β-sheet protein secondary structures were determined. The self-assembled nanoparticles can improve the stability of α-TOC by protecting them against degradation caused by light and oxygen. The antioxidant activity of the nanoparticles was stronger than those of the two free samples. Lipid hydroperoxides remained at a low level throughout the course of the study in emulsions containing 200 mg α-TOC/kg oil with the nanoparticles. The presence of 100 and 200 mg α-TOC/kg oil led to a 78.54 and 63.54 μmol/L inhibition of TBARS formation with the nanoparticles, respectively, vs the free samples containing control after 180 mins.  相似文献   

18.
The ultrasonic formation of stable emulsions of a bioactive material, black seed oil, in skim milk was investigated. The incorporation of 7% of black seed oil in pasteurised homogenized skim milk (PHSM) using 20 kHz high intensity ultrasound was successfully achieved. The effect of sonication time and acoustic power on the emulsion stability was studied. A minimum process time of 8 min at an applied acoustic power of 100 W was sufficient to produce emulsion droplets stable for at least 8 days upon storage at 4 ± 2 °C, which was confirmed through creaming stability, particle size, rheology and color analysis. Partially denatured whey proteins may provide stability to the emulsion droplets and in addition to the cavitation effects of ultrasound are responsible for the production of smaller sized emulsion droplets.  相似文献   

19.
Iron oxide nanoparticles can exhibit highly tunable physicochemical properties that are extremely important in applications such as catalysis, biomedicine and environmental remediation. The small size of iron oxide nanoparticles can be used to stabilize oil-in-water Pickering emulsions due to their high energy of adsorption at the interface of oil droplets in water. The objective of this work is to investigate the effect of the primary particle characteristics and stabilizing agent chemistry on the stability of oil-in-water Pickering emulsions. Iron oxide nanoparticles were synthesized by the co-precipitation method using stoichiometric amounts of Fe2+ and Fe3+ salts. Sodium stearoyl lactylate (SSL), a Food and Drug Administration approved food additive, was used to functionalize the iron oxide nanoparticles. SSL is useful in the generation of fat-in-water emulsions due to its high hydrophilic–lipophilic balance and its bilayer-forming capacity. Generation of a monolayer or a bilayer coating on the nanoparticles was controlled through systematic changes in reagent concentrations. The coated particles were then characterized using various analytical techniques to determine their size, their crystal structure and surface functionalization. The capacity of these bilayer coated nanoparticles to stabilize oil-in-water emulsions under various salt concentrations and pH values was also systematically determined using various characterization techniques. This study successfully demonstrated the ability to synthesize iron oxide nanoparticles (20–40 nm) coated with SSL in order to generate stable Pickering emulsions that were pH-responsive and resistant to significant destabilization in a saline environment, thereby lending themselves to applications in advanced oil spill recovery and remediation.  相似文献   

20.
Nano-structured polyurethane/organoclay composite films were fabricated by dispersing moisture-curable polyurethanes and fatty amine/amino-silane surface modified montmorillonite clay (organoclay) in cyclomethicone-in-water emulsions. Cyclomethicone Pickering emulsions were made by emulsifying decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6) and aminofunctional siloxane polymers with water using montmorillonite particles as emulsion stabilizers. Polyurethane and organoclay dispersed emulsions were spray coated on aluminum surfaces. Upon thermosetting, water repellent self-cleaning coatings were obtained with measured static water contact angles exceeding 155° and low contact angle hysteresis (<8°). Electron microscopy images of the coating surfaces revealed formation of self-similar hierarchical micro- and nano-scale surface structures. The surface morphology and the coating adhesion strength to aluminum substrates were found to be sensitive to the relative amounts of dispersed polyurethane and organoclay in the emulsions. The degree of superhydrophobicity was analyzed using static water contact angles as well as contact angle hysteresis measurements. Due to biocompatibility of cyclomethicones and polyurethane, developed coatings can be considered for specific bio-medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号