首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Date seeds from the date palm fruit are considered as a waste and they are known to contain several bioactive compounds. Producing nanoparticles from the date seeds can enhances their effectiveness and their utilization as novel functional food ingredients. In this study, date seed nanoparticles (DSNPs) synthesized using acid (HCl) hydrolysis method (HCl concentration of 38% and hydrolysis time of 4 days) was found to have particle size between 50 and 150 nm. The obtained DSNPs were characterized by measuring particle size and particle charge (Zetasizer), morphology using scanning electron microscope (SEM), and determination of the functional groups using fourier-transform infrared spectroscopy (FTIR). DSNPs were further treated with green extraction technology [ultrasound-assisted extraction (UAE)] using water-based and methanol-based solvent for optimizing the extraction of the bioactive compounds by implementing response surface methodology (RSM). The UAE of DSNPs were analysed for set of responses including total phenolic content (TPC), total flavonoid content (TFC), 1,1-diphenyl-2-picrlthydrazyl (DPPH) radical scavenging activity, ferric ion reducing antioxidant power (FRAP), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity. Three-factor and four-factor Box-Behnken design (BBD) of three models (Synthesis of DSNPs, UAE with water, and UAE with methanol) was performed. The results showed that in UAE of DSNPs using water-based solvent, the key independent factors effecting the TPC and TFC and antioxidant activities were S:L ratio (40:1 mg/ml) and treatment time (9 min). Whereas the methanol-based UAE of DSNPs was mostly affected by US amplitude/power (90%) and methanol concentration (80%). All models were further optimized using response optimizer in Minitab and the generated predicted values were very comparable to the actual obtained results which confirm the significance and validity of all RSM models used. The phenolic compounds identified from DSNPs consisted mainly of 3,4-Dihydroxy benzoic acid, ferulic acid, and p-coumaric acid. The present study demonstrated a successful method for synthesising DSNPs as well as documented the optimum UAE conditions to maximize the extraction of polyphenolic compounds from DSNPs and enhancing their antioxidant activities to be used in food application.  相似文献   

2.
In the cosmetic and pharmaceutical industries, it has been increasingly popular to use alternative solvents in the extraction of bioactive compounds from plants. Coffee pulp, a by-product of coffee production, contains different phenolic compounds with antioxidant properties. The effects of polyols, amplitude, extraction time, solvent concentration, and liquid–solid ratio on total phenolic content (TPC) using ultrasound-assisted extraction (UAE) were examined by single-factor studies. Three main factors that impact TPC were selected to optimize the extraction conditions for total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and their antioxidant activities using the Box-Behnken design. Different extraction methods were compared, the bioactive compounds were identified and quantified by liquid chromatography triple quadrupole mass spectrometer (LC-QQQ), and the cytotoxicity and cellular antioxidant activities of the extract were studied. According to the response model, the optimal conditions for the extraction of antioxidants from coffee pulp were as follows: extraction time of 7.65 min, liquid–solid ratio of 22.22 mL/g, and solvent concentration of 46.71 %. Under optimized conditions, the values of TPC, TFC, TTC, 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, and Ferric reducing antioxidant power assay (FRAP) were 9.29 ± 0.02 mg GAE/g sample, 58.82 ± 1.38 mg QE/g sample, 8.69 ± 0.25 mg TAE/g sample, 7.56 ± 0.27 mg TEAC/g sample, 13.59 ± 0.25 mg TEAC/g sample, and 10.90 ± 0.24 mg FeSO4/g sample, respectively. Compared with other extraction conditions, UAE with propylene glycol extract (PG-UAE) was significantly higher in TPC, TFC, TTC, DPPH, ABTS, and FRAP response values than UAE with ethanol (EtOH-UAE), maceration with propylene glycol (PG-maceration), and maceration with ethanol (EtOH -maceration) (p < 0.05). Major bioactive compounds detected by LC-QQQ included chlorogenic acid, caffeine, and trigonelline. At higher concentrations starting from 5 mg/ml, PG-UAE extract showed higher cell viability than EtOH-UAE in both cytotoxicity and cellular antioxidant assays. The researcher expects that this new extraction technique developed in this work could produce a higher yield of bioactive compounds with higher biological activity. Therefore, they can be used as active ingredients in cosmetics (anti-aging products) and pharmaceutical applications (food supplements, treatment for oxidative stress-related diseases) with minimal use of chemicals and energy.  相似文献   

3.
Phenolic compounds are secondary metabolites involved in plant adaptation processes. The development of extraction procedures, quantification, and identification of this compounds in habanero pepper (Capsicum chinense) leaves can provide information about their accumulation and possible biological function. The main objective of this work was to study the effect of the UAE method and the polarity of different extraction solvents on the recovery of phenolic compounds from C. chinense leaves. Quantification of the total phenolic content (TPC), antioxidant activity (AA) by ABTS+ and DPPH radical inhibition methods, and the relation between the dielectric constant (ε) as polarity parameter of the solvents and TPC using Weibull and Gaussian distribution models was analyzed. The major phenolic compounds in C. chinense leaves extracts were identified and quantified by UPLC-PDA-ESI-MS/MS. The highest recovery of TPC (24.39 ± 2.41 mg GAE g−1 dry wt) was obtained using MeOH (50%) by UAE method. Correlations between TPC and AA of 0.89 and 0.91 were found for both radical inhibition methods (ABTS+ and DPPH). The Weibull and Gaussian models showed high regression values (0.93 to 0.95) suggesting that the highest phenolic compounds recovery is obtained using solvents with “ε” values between 35 and 52 by UAE. The major compounds were identified as N-caffeoyl putrescine, apigenin, luteolin and diosmetin derivatives. The models presented are proposed as a useful tool to predict the appropriate solvent composition for the extraction of phenolic compounds from C. chinense leaves by UAE based on the “ε” of the solvents for future metabolomic studies.  相似文献   

4.
An ultrasound-assisted extraction (UAE) was optimized for the extraction of bioactive compound (total phenolic compound and total flavonoid content) with antioxidant activity (DPPH and FRAP assays) using response surface methodology based on Box-Behnken design (BBD). The effect of extraction temperature (X1: 30–70 °C), extraction time (X2: 25–45 min) and amplitude (X3: 30–50%) were determined. In addition, antimicrobial activity and application of optimized makiang seed extract (MSE) were also evaluated. Results showed that the optimum condition of UAE were X1: 51.82 °C, X2: 31.87 min and X3: 40.51%. It was also found that gallic acid was the major phenolic compound of optimized MSE and its minimum inhibitiory concentration (MIC) and minimum bactericidal concentration (MBC) was between 1.56 - 6.25 and 25–100 mg/mL respectively. The addition of MSE could enhance the stability of orange juice and shelf life extension was also obtained. This research finding suggests the beneficial opportunities for ultrasound-assisted extraction for the production of bioactive compound from makiang seed with antioxidant activity leading to an application in medicinal and functional food industry.  相似文献   

5.
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.  相似文献   

6.
An ultrasound assisted method was investigated to extract bioactive compounds from propolis. This method was based on a simple ultrasound treatment using ethanol as an extraction medium to facilitate the disruption of the propolis cells. Four different variables were chosen for determining the influence on the extraction efficiency: ultrasonic amplitude, ethanol concentration, temperature and time; the variables were selected by Box-Behnken design experiments. These parameters were optimised in order to obtain the highest yield, and the results exhibited the optimum conditions for achieving the goal as 100% amplitude of ultrasonic treatment, 70% solvent concentration, 58 °C and 30 min. The extraction yield under modified optimum extraction conditions was, as follows: 459.92 mg GAE/g of TPC, 220.62 mg QE/g of TFC and 1.95% of balsam content. The results showed that the ultrasound assisted extraction was suitable for bioactive compounds extraction from propolis. The most abundant phenolic compound was kaempferol (228.8 mg/g propolis) followed by myricetin (115.5 mg/g propolis), luteolin (27.2 mg/g propolis) and quercetin (25.2 mg/g propolis).  相似文献   

7.
Ultrasonic technology was applied for extraction of polyphenols and antioxidants from the rice bran using ethanol as a food grade solvent. Response surface methodology (RSM) was used to optimize experimental conditions for extraction of polyphenols and antioxidants. Three independent variables such as solvent percentage (%), temperature (°C) and time (min) were studied. Effect of ethanol concentration was found to be significant on all responses. Total phenolic content (TPC) varied from 2.37 to 6.35mg gallic acid equivalent/g of dry sample. Antioxidant activity of the extracts was determined by the ferric reducing antioxidant power (FRAP) assay and scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. FRAP and DPPH values varied from 31.74 to 57.23μmol Fe(2+)/g of dry sample and 16.88% to 55.61% inhibition, respectively. Extraction yields ranged from 11 to 20.2%. Optimal ultrasonic-assisted extraction (UAE) conditions were identified as 65-67% ethanol, 51-54°C, 40-45min. The experimental values agreed with those predicted by SRM models, thus indicating suitability of the model employed and the success of RSM in optimizing the extraction conditions.  相似文献   

8.
Cereal brans are by‐products of the milling of cereal grains, which are mainly used as low value ingredients in animal feed. Wheat and oat bran is a rich source of bioactives and phytochemicals, especially phenolic compounds. Within this study, the application of ultrasound (US) technology to assist the extraction of phenolics from oat and wheat bran was investigated (20–45 kHz). Peleg’s mathematical model was used to study the kinetics of ultrasound-assisted extraction (UAE) and subsequent stirring of total phenolic compounds (TPC). The surface morphology of cereal brans after extraction was studied using SEM analysis. The excellent agreement was determined between the values of TPC calculated from Peleg’s mathematical model and actual experimental results. The constant that represents a time required for the initial phenolic concentration to be extracted to one-half of its initial value has been introduced (K1/2). It was shown that the TPC extraction kinetics was dependent only on K1/2 enabling fast kinetics fitting and comparison between extraction rates. Moreover, different values of K1/2 constant could indicate the differences in brans composition and consequently different influence of US pretreatment on these samples.  相似文献   

9.
From the recent market trend, there is a huge demand for the bioactive compounds from various food matrices that could be capable enough to combat the emerging health effects in day-to-day life. Fenugreek is a well-known spice from ancient times for its medicinal and health benefits. In the present study, two methods of green extraction microwave (MAE) and ultrasound (UAE) assisted were studied in regard of extraction of fenugreek diosgenin. In this study, solvent type (acetone, ethanol, hexane and petroleum ether), solvent concentration (40, 60, 80 and 100%) and treatment time (1.5, 3.0, 4.5 and 6.0 min and 30, 40, 50 and 60 min for MAE and UAE method respectively) was varied to observe the effect of these parameters over extract yield and diosgenin content. The results of this study revealed that treatment time, type of solvent and its concentration and method adopted for extraction of diosgenin has significant effect. In relation with better yield extract and diosgenin content, the yield of fenugreek seed extract was 7.83% with MAE and 21.48% with UAE of fenugreek seed powder at 80% ethanol concentration at 6 and 60 min respectively. The content of diosgenin was observed in fenugreek seed powder extract was 35.50 mg/100 g in MAE and 40.37 mg/100 g in UAE with 80% ethanol concentration at 6 and 60 min respectively. The overall range of yield of fenugreek extract was varied from 1.04% to 32.48% and diosgenin content was 15.82 mg/100 g to 40.37 mg/100 g of fenugreek seed powder including both extraction methods. This study revealed that UAE would impose better ways for preparing fenugreek extract and observing diosgenin content from fenugreek seeds.  相似文献   

10.
Technical feasibility of an ecofriendly sequential process (ultrasound assisted extraction and reverse osmosis, or UAE and RO) was evaluated in order to obtain a functional Camu-camu (Myrciaria dubia) product with high vitamin C content. Water was used in the assisted extraction by probe ultrasound (UAE) in an experimental design to evaluate different times, amplitudes and temperatures. The best region for total phenolic (TP) and vitamin C (VC) extraction was 5 min, 60 °C and 30% amplitude. Following extraction, the sample was concentrated by reverse osmosis (R25a, 500 Da, polyamide, and 5 bar area 3 ft2), obtaining a relatively low fouling of 19%. At the end of the sequential process (by HPLC-DAD/UV vis), was obtained a concentrated camu-camu (CC) with high Vitamin C (52.01 ± 0.889 mg/g) and cyanidin-3-glucoside, being respectively 7.0 and 4.5 times higher; also the concentration of phenolic compounds was increased by 3.2 times (25.798 mg GAE/g), and anthocyanins in 6.5 times (66.169 mg of cyanidin-3-glucoside/100 g) as well as high antioxidant activity by all three methods evaluated (increased 3.0, 4.6 and 2.38 times for ABTS, DPPH, FRAP, respectively) by comparing the CC with the initial extract (CS). Twenty compounds were identified by UHPLC-QTOF-MS/MS, highlighting quercetin, gallic acid, p- coumaric, ellagic acid and cyanidin-3-glucoside, and at the first time alnusiin was detected in camu-camu. Therefore, the combination of ultrasound assisted extraction and reverse osmosis can be a promising profitable alternative in order to apply bioactive compounds in food, nutraceuticals and cosmetic matrices, bringing their benefits to consumers.  相似文献   

11.
In this work, multi-frequency ultrasound (working modes for the single-, dual- and tri-frequency in simultaneous ways) was applied to extract bioactive compounds from purple eggplant peels. The single-factor experiments were performed by varying six independent variables. A six-level-five-factor uniform design (UD) was further employed to evaluate the interaction effects between different factors. It was found that extraction temperature and extraction time significantly affected the total phenolic content (TPC), whereas the total monomeric anthocyanins (TMA) was mainly influenced by ethanol concentration, extraction temperature and solid-liquid ratio. Based on partial least-squares (PLS) regression analysis, the optimal conditions for TPC extraction were: 53.6 % ethanol concentration, 0.336 mm particle size, 44.5 °C extraction temperature, 35.2 min extraction time, 1:43 g/mL solid-liquid ratio, and similar optimal conditions were also obtained for TMA. Furthermore, the TPC and TMA extraction were investigated by ultrasound in different frequencies and power levels. Compared with single-frequency (40 kHz) and dual-frequency ultrasound (25 + 40 kHz), the extraction yield of TPC and TMA with tri-frequency ultrasound (25 + 40 + 70 kHz) increased by 23.65 % and 18.76 % respectively, which suggested the use of multi-frequency ultrasound, especially tri-frequency ultrasound, is an efficient strategy to improve the TPC and TMA extracts in purple eggplant peels.  相似文献   

12.
Several plants that are rich in polyphenolic compounds and exhibit biological properties are grown in the desert region of Mexico under extreme climate conditions. These compounds have been recovered by classic methodologies in these plants using organic solvents. However, little information is available regarding the use of alternative extraction technologies, such as ultrasound. In this paper, ultrasound-assisted extraction (UAE) parameters, such as the liquid:solid ratio, solvent concentration and extraction time, were studied using response surface methodology (RSM) for the extraction of polyphenols from desert plants including Jatropha dioica, Flourensia cernua, Turnera diffusa and Eucalyptus camaldulensis. Key process variables (i.e., liquid:solid ratio and ethanol concentration) exert the greatest influence on the extraction of all of the phenolic compounds (TPC) in the studied plants. The best conditions for the extraction of TPC involved an extraction time of 40 min, an ethanol concentration of 35% and a liquid:solid ratio ranging from 8 to 12 ml g−1 depending on the plant. The highest antioxidant activity was obtained in the E. camaldulensis extracts. The results indicated the ability of UAE to obtain polyphenolic antioxidant preparations from desert plants.  相似文献   

13.
In this study, the effect of temperature and ultrasonic application on extraction kinetics of polyphenols from dried olive leaf was investigated. Conventional (CVE) and ultrasonic-assisted extraction (UAE) were performed at 10, 20, 30, 50 and 70 °C using water as solvent. Extracts were characterized by measuring the total phenolic content, the antioxidant capacity and the oleuropein content (HPLC–DAD/MS–MS). Moreover, Naik’s model was used to mathematically describe the extraction kinetics. The experimental results showed that phenolic extraction was faster in UAE (ultrasonic-assisted extraction) than in CVE (conventional extraction), being extraction kinetics satisfactorily described using Naik model (include VAR > 98%). Besides, the total phenolic content, the antioxidant capacity and the oleuropein content were significantly (p < 0.05) improved by increasing the temperature in both CVE and UAE. Oleuropein content reached 6.57 ± 0.18 being extracted approximately 88% in the first minute for UAE experiments.  相似文献   

14.
Belamcanda chinensis is a common garden herb. The extraction technology of B. chinensis seed oil (BSO) was optimized by ultrasonic-assisted extraction (UAE) method, the composition, relative content of main fatty acids and physicochemical properties of BSO were determined, and the isolation, identification and determination of chemical constituent in BSO residue (BSOR) were also investigated. The optimum process conditions of BSO by UAE were optimized as ultrasound time 14 min, extraction temperature 42℃, the ultrasound power 413 W and the liquid–solid ratio 27:1 mL/g. Under this condition, the extraction yield was 22.32 % with the high contents of linoleic acid and oleic acid in BSO. Ten compounds were isolated and identified from BSOR, and belamcandaoid P (9) was a new compound. The contents of the determined compounds were all at high level in B. chinensis seed. The study provided a certain scientific reference for the comprehensive development and utilization of B. chinensis seeds.  相似文献   

15.
The combination of ultrasound and pressurized liquid extraction (UAPLE) was evaluated for the extraction of phenolic compounds from pomegranate peels (Punica granatum L.). The influence of several variables of the process on extraction yield, including solvent type (water, ethanol + water 30, 50 and 70% v:v), temperature (50–100 °C), ultrasound power (0–800 W at the generator, or 0–38.5 W at the tip of the probe), mean particle size (0.68 and 1.05 mm), and number of cycles (1–5), were analyzed according to the yield of 20 different phenolic compounds. The most suitable temperatures for the extraction of phenolic compounds using water were from 70 to 80 °C. In general, 100 °C was not adequate since the lowest extraction yields were observed. Results suggested that ultrasound had a greater impact on extraction yields using large particles and that intermediate ultrasound power (480–640 W at the generator, or 23.1–30.8 W at the tip of the probe) produced the best results. Using small particles (0.68 mm) or large particles (1.05 mm), extraction with ultrasound was 1 cycle faster. Ultrasound may have offset the negative effect of the use of large particles, however, did not increase the yield of phenolic compounds in any of the cases studied after five cycles. Additionally, the continuous clogging problems observed with small particles were avoided with the use of large particles, which combined with ultrasound allowed consistent operation with good intra and inter-day reproducibility (>95%). Using samples with large particle size, the best extraction conditions were achieved with water extraction solvent, 70 °C extraction temperature, ultrasound power at 480 W, and 3 cycles, yielding 61.72 ± 7.70 mg/g. UAPLE demonstrated to be a clean, efficient and a green alternative for the extraction of phenolic compounds from pomegranate peels. These findings indicate that UAPLE has a great potential to improve the extraction of bioactive compounds from natural products.  相似文献   

16.
The aim of the present research was to develop green and sustainable extraction procedure for β-carotene recovery from pumpkin. A series of hydrophobic natural deep eutectic solvents (NADESs) based on fatty acids were prepared to establish high extraction efficiency of β-carotene and to increase stability of extracted carotenoids from the pumpkin. To intensify extraction process, NADES composed of C8 and C10 fatty acids (3:1) was selected and coupled with ultrasound assisted extraction. Response surface methodology and artificial neural network model (ANN) model was adopted to analyze significance of extraction parameters demonstrating high prediction levels of the β-carotene yield, experimentally confirming the maximum β-carotene content of 151.41 µg/mL at the optimal process condition. Extracted carotenoids in the optimal NADES extract have shown high stability during the storing period of 180 days. A switchable-hydrophilicity eutectic solvent system has been introduced as a successful way to recover extracted carotenoids from the NADES solvent. It was capable of precipitating 90% of carotenoids present in the extract. The proposed procedure is simple, easily scalable and has minimal impact on operators and the environment.  相似文献   

17.
Salvilla is a widely distributed plant used in treatments against gastrointestinal disorders due to its phenolic antioxidant and anti-inflammatory potential. Major yield and quality of bioactive polyphenols must be obtained with no degradation during suitable processes such as Ultrasound-Assisted Extraction (UAE), which allows an efficient extraction of metabolites at appropriate parameter conditions. Salvilla extractions were made using UAE and aqueous ethanolic solutions. Variables used in UAE were sonication time, wave amplitude and percentage of ethanol in solvent. Extracts were tested for total flavonoids, antioxidant activity (ABTS, FRAP and ORAC) and an identification and quantification of phenolic compounds was carried out by UPLC-PDA-ESI-MS/MS. Once elected the better extraction conditions, an anti-inflammatory test was performed for this treatment. As a result, total flavonoids content in extracts was 147 to 288 µg catechin equivalents/mg of dry salvilla extract. All extracts have shown good antioxidant activity (86 to 280 mM Trolox eq/mg dry salvilla extract). Flavonoids contents by chromatography were higher than hydroxybenzoic and hydroxycinnamic acids specially the flavone, flavanol and flavanone groups. Treatment T6 (75% ethanol, 30% amplitude and 10 min extraction time) was the best extract in terms of significant flavonols, antioxidant activity, and higher anti-inflammatory potential.  相似文献   

18.
Ultrasound-assisted solvent extraction (UAE) was applied to extract underutilized Madhuca longifolia seed oil. The effect of extraction time, temperature, solvent type, solvent/sample ratio, and amplitude on the oil yield and recovery were investigated. Approximately 56.97% of oil yield and 99.54% of oil recovery were attained using mild conditions of 35 min, 35 °C, 40% amplitude, isopropanol to acetone (1:1), and solvent to sample (20 mL/g). UAE oil yield and recovery were comparable with Soxhlet extraction (SXE) whilst mechanical pressing (ME) yielded < 50% of UAE recovery. UAE does not affect the fatty acids composition (46% C18:1; 22% C16:0; 21% C18:0, 10% C18:2), and triacylglycerol profile (23% POO, 17% POS, 16% SOO, and 14% POP). Interestingly, UAE extracted oil conferred remarkably (P < 0.05) higher antioxidant capacity (IC50 of DPPH 106.60 mg/mL and ABTS 39.80 mg/mL) than SXE (IC50 of DPPH 810.40 mg/mL and ABTS 757.43 mg/mL) or ME (IC50 of DPPH 622.38 mg/mL and ABTS 392.87 mg/mL).  相似文献   

19.
Ultrasound and deep eutectic supramolecular polymers (DESP) is a novel combination of green extraction method for phytochemicals. In this study, a new type of green extractant was developed: DESP. It is a derivative of deep eutectic solvent (DES) and was prepared by supramolecular polymer unit β-cyclodextrin (β-CD) as hydrogen bond acceptor (HBA) and organic acid as hydrogen bond donor (HBD). The current work focuses on the use of ultrasonic-assisted (UAE) DESP extraction of polyphenolic compounds (PCs) from bayberry. The experimental results showed that DESP synthesized with β-CD and lactic acid (LA) in a ratio of 1:1 (w/w %) had the best extraction effect. And by using a three-level factor experiment and the response surface method, the predicted TPC content is very close to the actual content (28.85 ± 1.27 mg GAE/g). The DESP extract including PCs were further used as plasticizer for chitosan (CS) to prepare highly active green biofilms (DESP-CS). It is possible to reduce the tedious procedures for separating biologically active substances from DESP. The experiment proved that the prepared films have good mechanical properties, plastic deformation resistance, thermal stability and antioxidant activity.  相似文献   

20.
Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号