首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coagulation process is used for destabilization of emulsions to promote aggregation of oil droplets on flocs which can be subsequently removed by sedimentation or flotation. The objectives of this study were to investigate the effect of temperature and pH on the effectiveness of destabilization of olive oil–water emulsions in relation to floc morphology and aggregation characteristics of oil droplets, and to quantify the ability of flocs to capture and separate oil. A cationic polyelectrolyte was used for the coagulation of oil droplets in edible olive oil–water emulsions using a jar test apparatus. The flocs formed in olive oil–water emulsions after coagulant addition were analyzed using microscopic image analysis techniques. Fractal dimension, radius of captured oil droplets on flocs, number of oil droplets aggregated on flocs, and floc size were used to quantitatively characterize and compared the effectiveness of the coagulation process at different conditions (pH and temperature) and the ability of flocs to remove oil from water. Analysis of microscopic images showed that floc size was not always the best measure of effectiveness of coagulation process in oil–water emulsions. The flocs forming at different pH levels and temperatures had significant morphological differences in their ability to aggregate different sizes and numbers of oil droplets, resulting in significant differences in their ability for separating oil. Fractal dimension did not correlate with the ability of flocs to aggregate oil droplets nor the total amount of oil captured on flocs. Temperature had a significant effect on droplet size and number of droplets captured on flocs. The differences in floc sizes at different temperatures were not significant. However, the flocs forming at 20 °C had fewer but larger droplets aggregating larger amounts of oil than flocs formed at 30 °C and 40 °C. The size of droplets at different pH levels was similar, however, there were significant differences in number of droplets aggregating on flocs and floc sizes. The amount of oil captured on flocs at pH 7 and pH 9 was significantly higher than those at pH 5 and pH 11. The calculated fractal dimensions of the flocs (all less than 1.8) indicated that the coagulation process was diffusion limited implying that there was no repulsion between the colliding particles (i.e., droplets and flocs); hence, each collision between flocs and droplets resulted in attachment.  相似文献   

2.
In this paper we have reviewed the recent developments and highlighted the status of research in the area of three-phase systems with applications to solids-stabilized emulsions. The various factors affecting the formation and stability of these emulsions such as contact angle, demulsifier concentration, temperature, interfacial rheology, and interfacial structure are discussed. The phenomenon of oil loss due to entrainment in emulsion sludge layers is also described and a semi-empirical approach is suggested for estimating oil loss.  相似文献   

3.
4.
Many chemical reactions may be accelerated by order(s) of magnitude when exposed to microwaves. Reaction selectivities are often enhanced. Reasons for microwave reaction enhancements are speculative, often conflicting. We have demonstrated that microwaves can change the energies and/or the "effective temperature" of individual species at interfaces. Changes in the relative energies of reacting species or intermediates are shown by Monte Carlo simulation to lead to the observed enhancements in reaction rates or selectivities. Moreover, variations in microwave exposure in time or space can result in significant rate enhancement. Such variations may provide unique rate control.  相似文献   

5.
In this article, we study the adsorption of protein ovalbumin (OVA) at corn oil (CO), soybean oil (SBO), olive oil (OO), and water interfaces along with the emulsification of these oils in water. The dynamic interfacial tension (IFT) measurements show a reduction in IFT in the order SBO–water?~?CO–water?>?OO–water, with OVA adsorption being dominated by the free diffusion of OVA at the interfaces. CO–water, OO–water, and SBO–water emulsions cream with time. The cream phase consists of jammed closed-packed oil droplets due to depletion-induced inter-droplet attractions with higher G′ and G″ (~700?Pa) for emulsions with 1?wt% OVA.  相似文献   

6.
7.
Understanding the factors that control protein structure and stability at the oil-water interface continues to be a major focus to optimize the formulation of protein-stabilized emulsions. In this study, a combination of synchrotron radiation circular dichroism spectroscopy, front-face fluorescence spectroscopy, and dual polarization interferometry (DPI) was used to characterize the conformation and geometric structure of β-lactoglobulin (β-Lg) upon adsorption to two oil-water interfaces: a hexadecane-water interface and a tricaprylin-water interface. The results show that, upon adsorption to both oil-water interfaces, β-Lg went through a β-sheet to α-helix transition with a corresponding loss of its globular tertiary structure. The degree of conformational change was also a function of the oil phase polarity. The hexadecane oil induced a much higher degree of non-native α-helix compared to the tricaprylin oil. In contrast to the β-Lg conformation in solution, the non-native α-helical-rich conformation of β-Lg at the interface was resistant to further conformational change upon heating. DPI measurements suggest that β-Lg formed a thin dense layer at emulsion droplet surfaces. The effects of high temperature and the presence of salt on these β-Lg emulsions were then investigated by monitoring changes in the ζ-potential and particle size. In the absence of salt, high electrostatic repulsion meant β-Lg-stabilized emulsions were resistant to heating to 90 °C. Adding salt (120 mM NaCl) before or after heating led to emulsion flocculation due to the screening of the electrostatic repulsion between colloidal particles. This study has provided insight into the structural properties of proteins adsorbed at the oil-water interface and has implications in the formulation and production of emulsions stabilized by globular proteins.  相似文献   

8.
9.
Fluoroquinolones in soil—risks and challenges   总被引:5,自引:0,他引:5  
Fluoroquinolones (FQs) are among the most important antibacterial agents used in human and veterinary medicine. Because of the growing practice of adding manure and sewage sludge to agricultural fields these drugs end up in soils, where they can accumulate and have adverse effects on organisms. This paper presents an overview of recent developments in the determination of FQs in solid environmental matrices and describes the risks and challenges (persistence, fate, effects, and remediation) which result from their presence in soil. Figure Pathways into the environment for FQs  相似文献   

10.
The total desolvation rate of sample droplets in an argon inductively coupled plasma (Ar ICP) is investigated through the development of a two-phase continuum flow computer model. The desolvation model is supplemented by equations used to determine the trajectories of particles through the plasma. The model is used to calculate the behavior of aerosol droplets from a direct injection high efficiency nebulizer (DIHEN), a micronebulizer used to inject microliter quantities of samples that are toxic, expensive, or of limited volume. We use the combination of desolvation and transport models to present the first predicted spatial distribution of droplet concentrations and evaporation rates in an ICP flow. These data are compared with the behavior of a DIHEN spray in an environment with no net argon gas flow to determine the importance of gas flow rates to overall droplet concentration profiles in the ICP. In addition, two separate techniques (Stokes’ equation and the direct simulation Monte Carlo treatment) for determining droplet trajectories are contrasted.  相似文献   

11.
The adsorption of proteins at surfaces and interfaces is important in a wide range of industries. Understanding and controlling the conformation of adsorbed proteins at surfaces is critical to stability and function in many technological applications including foods and biomedical testing kits or sensors. Studying adsorbed protein conformation is difficult experimentally and so over the past few decades researchers have turned to computer simulation methods to give information at the atomic level on this important area. In this review we summarize some of the significant simulation work over the past four years at both fluid (liquid–liquid and gas–liquid interfaces) and solid–liquid interfaces. Of particular significance is the work on surfactant proteins such as fungal hydrophobins, ranspumin-2 from the túngara frog and the bacteria protein BslA. These have evolved unique structures impart very high surface-active properties to the molecules. A highlight is the elucidation of the clam-shell unhinging mechanism of ranspumin-2 adsorption to the gas–liquid interface that is responsible for its adsorption to and stabilization of the air bubbles in túngara frog foam nests.  相似文献   

12.
It is well accepted that the morphology of the nanomaterials has great effect on the properties and hence their applications. Therefore, morphology of materials has become a focus of research in the scientific world. The present study shows that interfacial polymerization and subsequent self-assembly provides a control over the morphology, nanorod/nanosheet, of polyaniline (PANI) films synthesized by liquid–liquid interface reaction technique and solid–liquid interface reaction technique. The synthesized PANI films and its particulate structure are characterized by using various spectroscopic techniques such as UV–visible, ATR-IR, Raman and XPS. The study confirmed the formation, the structure, the size and shape of particles and morphology of PANI by using analytical techniques namely, SAED, SEM and TEM. An important observation is that doping with HCl significantly improves the nanorod formation at the interface. The doped PANI electrode exhibits a higher area with rectangular shape in CV cycle and better cycle stability when compared with the performance of undoped PANI films. We believe that the results of these studies can give valuable leads to manoeuvre formation of PANI films with desired morphology for various applications.
Figure
Time and temperature-dependent morphology of PANI layer leading to the formation of one/two-dimensional structures namely, PANI rods/sheets, is achieved by monitoring of self-assembly of nano particulate film formed at liquid–liquid/solid–liquid interfaces  相似文献   

13.
《Colloids and Surfaces》1980,1(2):173-189
A reactivity scale is built up for sp-metals on the basis of the relationship between the potential of zero charge and the electron work function in a vacuum. The latter is derived “in situ” from charge-potential curves as obtained by integration of different capacity data. Increase in solvophilicity with decreasing work function is observed. The reactivity scale is qualitatively preserved in different solvents. It is shown that the rate of solvent reorientation with field and the solvophilicity run parallel so that a quantitative relationship can be established in different solvents between the reciprocal of the experimental differential capacity at the potential of zero charge and the solvophilicity as expressed by the enthalpy of oxide formation. The relation between the potential of zero charge and the electron work function in polar solvents is also discussed and the concepts are applied to literature data for aqueous solutions. From these, the energy of delocalized electrons in water is derived and its quantitative significance discussed in relation to the procedure of obtainment of the photoemission data.  相似文献   

14.
15.
Some new experimental methods for measuring the optical chirality of molecular aggregates formed at liquid–liquid interfaces have been reviewed. Chirality measurements of interfacial aggregates are highly important not only in analytical spectroscopy but also in biochemistry and surface nanochemistry. Among these methods, a centrifugal liquid membrane method was shown to be a highly versatile method for measuring the optical chirality of the liquid–liquid interface when used in combination with a commercially available circular dichroism (CD) spectropolarimeter, provided that the interfacial aggregate exhibited a large molar absorptivity. Therefore, porphyrin and phthalocyanine were used as chromophoric probes of the chirality of itself or guest molecules at the interface. A microscopic CD method was also demonstrated for the measurement of a small region of a film or a sheet sample. In addition, second-harmonic generation and Raman scattering methods were reviewed as promising methods for detecting interfacial optical molecules and measuring bond distortions of chiral molecules, respectively.  相似文献   

16.
The conformation and structural dimensions of α-lactalbumin (α-La) both in solution and adsorbed at oil-water interfaces of emulsions were investigated using synchrotron radiation circular dichroism (SRCD) spectroscopy, front-face tryptophan fluorescence (FFTF) spectroscopy, and dual polarization interferometry (DPI). The near-UV SRCD and the FFTF results demonstrated that the hydrophobic environment of the aromatic residues located in the hydrophobic core of native α-La was significantly altered upon adsorption, indicating the unfolding of the hydrophobic core of α-La upon adsorption. The far-UV SRCD results showed that adsorption of α-La at oil-water interfaces created a new non-native secondary structure that was more stable to thermally induced conformational changes. Specifically, the α-helical conformation increased from 29.9% in solution to 45.8% at the tricaprylin-water interface and to 58.5% at the hexadecane-water interface. However, the β-sheet structure decreased from 18.0% in solution to less than 10% at both oil-water interfaces. The DPI study showed that adsorption of α-La to a hydrophobic C18-water surface caused a change in the dimensions of α-La from the native globule-like shape (2.5-3.7 nm) to a compact/dense layer approximately 1.1 nm thick. Analysis of the colloidal stability of α-La stabilized emulsions showed that these emulsions were physically stable against droplet flocculation at elevated temperatures both in the absence and in the presence of 120 mM NaCl. In the absence of salt, the thermal stability of emulsions was due to the strong electrostatic repulsion provided by the adsorbed α-La layer, which was formed after the adsorption and structural rearrangement. In the presence of salt, although the electrostatic repulsion was reduced via electrostatic screening, heating did not induce strong and permanent droplet flocculation. The thermal stability of α-La stabilized emulsions in the presence of salt is a combined effect of the electrostatic repulsion and the lack of covalent disulfide interchange reactions. This study reports new information on the secondary and tertiary structural changes of α-La upon adsorption to oil-water interfaces. It also presents new results on the physical stability of α-La stabilized emulsions during heating and at moderate ionic strength (120 mM NaCl). The results broaden our understanding of the factors controlling protein structural change at emulsion interfaces and how this affects emulsion stability.  相似文献   

17.
Currently, there is very limited information on the electrophoretic behavior of particles at a liquid–liquid interface formed by two conducting liquid solutions. Here, electrophoretic velocities of polystyrene particles at a polyethylene glycol (PEG)–dextran (DEX) interface were investigated in this paper. Experimental results show that the particle at the interface moves in the opposite direction to the applied electric field, with a velocity much lower than that in the PEG-rich phase and a litter larger than that in the DEX-rich phase. Similarly to the movement in Newtonian fluids, the velocity increases linearly with the increase in the applied electric field. Different to particle electrophoresis in Newtonian fluids, the velocities of the particles at the PEG–DEX interface increase linearly with the decrease in particle's diameters, implying a possible size-based particle differentiation at an interface.  相似文献   

18.
Natural biopolymer stabilized oil-in-water emulsions were formulated using β-lactoglobulin (β-lg), gum arabic (GA), and β-lg:GA solutions as an alternative to synthetic surfactants. Emulsions using these biopolymers and their complexes were formulated varying the biopolymer total concentration, the protein-to-polysaccharide ratio, and the emulsification protocol. This work showed that whereas β-lg enabled the formulation of emulsions at concentration as low as 0.5 (w/w)%, GA allowed to obtain emulsions at concentrations equal to or higher than 2.5 (w/w)%. In order to improve emulsion stability, β-lg and GA were complexed through strong attractive electrostatic interactions. GA solution had to be added to previously prepared β-lg emulsions in order to obtain stable emulsions. Interfacial tension and interfacial rheological measurements allowed a better understanding of the possible stabilizing mechanism. β-lg and GA both induced a very effective decrease in interfacial tension and showed interfacial elastic behaviour. In the mixed system, β-lg adsorbed at the interface and GA electrostatically bound to it, leading to the formation of a bi-layer stabilized emulsion. However, emulsion stability was not improved compared to β-lg stabilized emulsion, probably due to depletion or bridging flocculation.  相似文献   

19.
Protein and surfactant modified air–water interfaces are an important model system for colloid science as many applications for example aqueous foams in food products rely on our knowledge and ability to tune molecular structures at these interfaces. That is because interfaces are a fundamental building block in the hierarchical structure of foam, where in fact the molecular level can determine properties on larger length scales. For that reason it is of great importance to increase our ability to study air–water interfaces with molecular level probes and to obtain not only information on coverage but also direct information on interfacial composition, molecular order, orientations as well as information on the charged state of an interface. Vibrational sum-frequency generation (SFG) is a powerful tool that can help to address these issues and is inherently surface sensitive. In this contribution we will review recent developments in the use of SFG for studies of biomolecules at aqueous interfaces and discuss current issues with the interpretation of SFG spectra from electrified interfaces. In order to guide interpretations from interface spectroscopy we invoke the use of complementary methods such as ellipsometry and zetapotential measurements of bulk molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号