首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to investigate the effects of high-intensity ultrasound treatment on the functional properties and emulsion stability of Neosalanx taihuensis myofibrillar protein (MP). The results showed that the carbonyl groups, emulsification properties, intrinsic fluorescence intensity, and surface hydrophobicity of the ultrasound treated MP solution were increased compared to the MP without ultrasound treatment. The results of secondary structure showed that the ultrasound treatment could cause a huge increase of β-sheet and a decline of α-helix of MP, indicating that ultrasound induced molecular unfolding and stretching. Moreover, ultrasound reduced the content of total sulfhydryl and led to a certain degree of MP cross-linking. The microscopic morphology of MP emulsion indicated that the emulsion droplet decreased with the increase of ultrasound power. In addition, ultrasound could also increase the storage modulus of the MP emulsion. The results for the lipid oxidation products indicated that ultrasound significantly improved the oxidative stability of N. taihuensis MP emulsions. This study offers an important reference theoretically for the ultrasound modification of aquatic proteins and the future development of N. taihuensis deep-processed products represented by surimi.  相似文献   

2.
Preparation of pea protein isolate-xylan (PPI-X) conjugate-stabilized nanoemulsions using ultrasonic homogenization and the corresponding structure and environmental stability were investigated in this study. Conditions used to prepare nanoemulsions were optimized using a response surface methodology as follows: protein concentration 8.86 mg/mL, ultrasound amplitudes 57 % (370.5 W), and ultrasound time 16 min. PPI-X conjugate-stabilized nanoemulsions formed under these conditions exhibited less mean droplet size (189.4 ± 0.45 nm), more uniform droplet distribution, greater absolute value of zeta-potential (44.8 ± 0.22 mV), and higher protein adsorption content compared with PPI-stabilized nanoemulsions. PPI-X conjugate-stabilized nanoemulsions also exhibited even particle distribution and dense network structure, which might be reasons for the observed high interfacial protein adsorption content of conjugate-stabilized nanoemulsions. Moreover, better stability against environmental stresses, such as thermal treatment, freeze–thaw treatment, ionic strength and type, and storage time was also observed for the conjugate-stabilized nanoemulsions, indicating that this type of nanoemulsions possess a potential to endure harsh food processing conditions. Therefore, results provide a novel approach for the preparation of protein-polysaccharide conjugate-stabilized nanoemulsions to be applied as novel ingredients to meet special requirements of processed foods.  相似文献   

3.
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.  相似文献   

4.
The specific molecular behavior of myofibrillar proteins (MPs) in low-salt media limits the development of muscle protein-based emulsions. This study aimed to evaluate the potential of high-intensity ultrasound (HIU; 150, 300, 450, and 600 W) to improve the physical stability of MP emulsion at low ionic strength and decipher the underlying mechanism. According to the physical stability analysis, HIU pretreatment, especially at 450 W power, significantly improved the physical stability of MP emulsions, as evidenced by the reduced particle size, enhanced inter-droplet interactions, and increased uniformity of the droplet size distribution (p < 0.05). The results of interfacial protein composition, Fourier transform infrared spectroscopy analysis, and microscopic morphology observation of the aqueous MP suspension suggested that HIU induced the depolymerization of filamentous myosin polymers and inhibited the subsequent self-assembly behavior. These effects may facilitate protein adsorption and molecular rearrangement at the oil–water interface, forming a complete interfacial layer and, thus, droplet stabilization. Confocal laser scanning microscopy observations further confirmed these results. In conclusion, these findings provide direct evidence for the role of HIU in improving the physical stability of MP emulsions at low ionic strength.  相似文献   

5.
The effect of pH on the occurrence states of peanut protein isolate (PPI) and high methoxyl pectin (HMP), and droplet breakup model of the emulsions under ultrasound were studied. Particle size distribution and scanning electron microscopy results showed that PPI-HMP existed a soluble complex at pH 5.0, had no interaction at pH 7.0, and was co-soluble at pH 9.0. Droplet breakup model results revealed that the characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and 9.0. The average diameter of the droplet well satisfied the model. According to rheological properties, interface tension, and microstructure, the formation mechanism and characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and pH 9.0. The research provided a reference for constructing emulsions using pH-shifted PPI-HMP under ultrasound.  相似文献   

6.
The effects of ultrasound combined (25 kHz, 400 ± 20 W/L, ultrasonic time of 5, 10 and 15 min) with soy protein isolate processing on gelling properties of low-salt silver carp surimi, aggregation and conformation of myofibrillar protein were investigated. The results revealed that, compared with only adding soy protein isolate components, ultrasound-assisted soy protein isolate had a more obvious effect on the protein structure in low-salt surimi, leading to the decrease in α-helix and total sulfhydryl contents, and the increase in β-sheet content and protein solubility. As a result, more proteins participated in the formation of the gel network, and significant improvements in hardness, gel strength and water-holding capacity of the low-salt surimi gel were observed, while the myosin heavy chain in SDS-PAGE was weakened. The low-field NMR results showed that the initial relaxation time of T2 was apparently shorter, the free water content decreased and the bound water content increased under the action of ultrasound. Scanning electron microscope observation found that the surimi gel treated by ultrasound exhibited smaller holes, and had a more stable and denser network structure. In conclusion, the results of our work demonstrated that ultrasound combined with soy protein isolate can significantly improve the gel quality properties of low-salt silver carp.  相似文献   

7.
The insolubility and poor dispersion of myofibrillar proteins (MPs) in water have always been the primary factors limiting the development of novel meat-based products. This study aimed to explore the mechanisms by which high-intensity ultrasound (HIU) at various power settings (0, 150, 300, 450 and 600 W) improved the solubility and dispersion stability of MPs in water. According to the solubility analysis, HIU significantly increased the water solubility of MPs (p < 0.05). The MPs treated with 450 W exhibited the best dispersion stability in water, which corresponded to the highest zeta-potential, smallest particle size and most uniform distribution (p < 0.05). Based on the circular dichroism and fluorescence spectroscopy and surface hydrophobicity analysis, the loss of the MP superhelix and subsequent random dissociation of the filamentous myosin structure appeared to be the main mechanism of MP solubilization. In addition, according to the zeta-potential, SDS-PAGE and Nano LC-ESI-MS/MS analyses, the increase in surface charge and the formation of soluble oligomers may provide additional forces to inhibit filament assembly, thereby improving the stability of the aqueous MP suspension. Atomic force microscopy (AFM) observations further confirmed these results. In conclusion, an HIU treatment effectively improves the solubility and dispersion stability of MP in water.  相似文献   

8.
The effects of high-intensity ultrasound on the physicochemical and gelling properties of Litopenaeus vannamei (L. vannamei) myofibrillar protein (MP) were investigated. MP solutions were subjected to ultrasound treatment (power 100 W, 300 W, and 500 W). It was found that the carbonyl and free amino contents of MP increased significantly with increasing ultrasound power, accompanied by enhanced emulsification properties. The increase of free radical and carbonyl content indicated that ultrasound induced the oxidation of MP. With the increase of ultrasound power, it was found that the total sulfhydryl content of the shrimp MP decreased, but the surface hydrophobicity increased significantly, which might be closely related to the conformational changes of MP. Meanwhile, a significant increase of β-sheet but a decrease of α-helix in the secondary structure of MP was observed with increasing ultrasound power, indicating that ultrasound treatment induced the stretching and flexibility of MP molecules. SDS-PAGE showed that L. vannamei MP consisted of myosin heavy chain, actin, myosin light chain, paramyosin and tropomyosin. Ultrasound treatment could lead to some degree of oxidative aggregation of MP. The results of rheological properties indicated that ultrasound treatment enhanced the viscoelasticity of MP and further improved the gel strength of MP gel. This study can provide a theoretical basis for the functional modification of shrimp MP and the processing of its surimi products.  相似文献   

9.
In this study, we investigated the effect of the ultrasound-assisted Maillard reaction on the structural and emulsifying properties of myofibrillar protein (MP) and dextran (DX) conjugates with different molecular weights (40, 70 and 150 kDa). Compared with classical heating, mild and moderate ultrasound-assisted methods (100–200 W) could accelerate the later stage of the Maillard reaction, which increased the degree of graft (DG) and the content of advanced Maillard reaction products (MPRs). Structural analysis revealed conjugates obtained by Maillard reaction induced the loss of ordered secondary structures (α-helix, β-sheets) and red-shift of maximum emission wavelength of intrinsic fluorescence spectrum. The conjugate containing 40 kDa DX exhibited higher extent of Maillard reaction compared to those containing 70 kDa and 150 kDa DX under various treating methods. Moreover, the ultrasound-assisted Maillard reaction could effectively improve the emulsifying behaviors. 100 W ultrasound-induced conjugates grafted by 70 kDa DX produced the smallest emulsion size with optimum storage stability. Confocal laser scanning microscopy and analytical centrifugal analyzer further confirmed MP grafted by 70 kDa DX with the assistance of 100 W ultrasound field could produce the smallest and most homogeneous MP-base emulsion with no flocculation. Our study demonstrated that mild ultrasound treatment resulted in well-controlled Maillard reaction, and the related glycoconjugate grafted with 70 kDa DX showed the greatest improvements in emulsifying ability and stability. These findings provided a theoretical foundation for the development of emulsion-based foods with excellent characteristics.  相似文献   

10.
Oxidative attack leads to the oxidative aggregation and structural and functional feature weakening of soybean protein. We aimed to investigate the impact of ultrasonic treatment (UT) with different intensities on the structure, emulsifying features and interfacial features of oxidized soybean protein aggregates (OSPI). The results showed that oxidative treatment could disrupt the native soy protein (SPI) structure by promoting the formation of oxidized aggregates with β1-sheet structures through hydrophobic interactions. These changes led to a decrease in the solubility, emulsification ability and interfacial activity of soybean protein. After low-power ultrasound (100 W, 200 W) treatment, the relative contents of β1-sheets, β2-sheets, random coils, and disulfide bonds of the OSPI increased while the surface hydrophobicity, absolute ζ-potential value and free sulfhydryl content decreased. Moreover, protein aggregates with larger particle sizes and poor solubility were formed. The emulsions prepared using the OSPI showed bridging flocculation and decreased protein adsorption and interfacial tension. After applying medium-power ultrasound (300 W, 400 W, and 500 W) treatments, the OSPI solubility increased and particle size decreased. The α-helix and β-turn contents, surface hydrophobicity and absolute ζ-potential value increased, the structure unfolded, and the disulfide bond content decreased. These changes improved the emulsification activity and emulsion state of the OSPI and increased the protein adsorption capacity and interfacial tension of the emulsion. However, after a high-power ultrasound (600 W) treatment, the OSPI showed a tendency to reaggregate, which had a certain negative effect on the emulsification activity and interfacial activity. The results showed that UT at an appropriate power could depolymerize OSPI and improve the emulsification and interfacial activity of soybean protein.  相似文献   

11.
In this work, two different covalent reactions, namely, alkaline reaction and free radical oxidation, were selected to compare the difference in the strengthening effects of ultrasound treatment (UDT). The grafting effects were verified by protein electrophoresis and bound gallic acid (GA) assay. Furthermore, non-covalent interactions between myofibrillar protein (MPN) aggregates were destroyed by UDT, as proved by the lower particle sizes and higher ζ-potential. Comparatively, the results from tertiary structure index and circular dichroism revealed UDT-assisted free radical oxidation could lead to better conjugates with greater structural properties. The atomic force microscope (AFME) and protein flexibility showed that MPNs appeared to display as irregular spherical particles after alkaline reaction, however, maintained fibrous structure during the free radical oxidation. Consequently, the combination of UDT and free radical oxidation were more effectively for strengthening the influence of acoustic cavitation on MPNs, of which mechanism was the changes in viscosity properties, microstructure and acoustic cavitation radicals.  相似文献   

12.
Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from porcine longissimus dorsi was investigated, compared with traditional thawing methods (water immersion thawing, (WT)) and fresh meat (FM). The results showed that a decrease in MP gelling properties of all thawing samples was observed. The increase in roughness of MP gel from all thawing samples explained that the flatter, smoother, and denser surface morphology of that from FM samples was destroyed based on the observation by atomic force microscopy. There was significant difference (P < 0.05) in all gel indicators (particle size, turbidity, whiteness, water-holding capacity (WHC), moisture distribution, rheological characteristics, surface morphology) of MP from MT samples and there was insignificant difference (P > 0.05) in turbidity, whiteness, WHC of MP from VT samples compared with that from FM samples. There was insignificant difference (P > 0.05) in gel properties between UT and VT. The effect of UT and VT (new thawing methods) on MP gelling properties was significantly lower (P < 0.05) than that of WT (traditional thawing methods), and the effect of that from MT was obviously compared with other thawing methods.  相似文献   

13.
Optimizing ultrasound (ULD)-assisted flavonoid modification is an important component of enhancing its application potential. In this work, diverse flavonoids, such as quercetin (Que), apigenin (Api), and morin (Mor), were used to modify protein in myofibrillar protein (MP)/cellulose nanocrystal (CN) complexes using ULD-assisted method. Compared with the MP/CNs group, the triiodide contents of MP-Que/CNs, MP-Api/CNs, and MP-Mor/CNs increased by 1175.84%, 479.05%, and 2281.50% respectively. The findings revealed that the actual intensity of ULD was drastically reduced by the molecular weight decrease of these flavonoids. For olive oil emulsions prepared with mixed emulsifiers, the low interfacial diffusion rates (0.03 mN·m·s−1/2) and weak emulsifying activity (8.33 m2/g) of the MP/CN complexes were significantly improved by the flavonoids after ULD-assisted treatment. Notably, the emulsions prepared using MP-Api/CNs contained smaller oil droplets and exhibited better emulsifying properties, compared to emulsions prepared with MP-Mor/CNs or MP-Que/CNs. This study is essential for ULD-assisted treatment since the processing impact may be increased by choosing the most suitable flavonoid.  相似文献   

14.
Effects of the incorporation of ultrasound with varied intensities (0–800 W) into the thermal-induced gelation process on the gelling properties of myofibrillar protein (MP) were explored. In comparison with single heating, ultrasound-assisted heating (<600 W) led to significant increases in gel strength (up to 17.9%) and water holding capacity (up to 32.7%). Moreover, moderate ultrasound treatment was conducive to the fabrication of compact and homogenous gel networks with small pores, which could effectively impair the fluidity of water and allow redundant water to be entrapped within the gel network. Electrophoresis revealed that the incorporation of ultrasound into the gelation process facilitated more proteins to get involved in the development of gel network. With the intensified ultrasound power, α-helix in the gels lowered pronouncedly with a simultaneous increment of β-sheet, β-turn, and random coil. Furthermore, hydrophobic interactions and disulfide bonds were reinforced by the ultrasound treatment, which was in support of the construction of preeminent MP gels.  相似文献   

15.
The influence of multi-frequency combined ultrasound thawing on primary, secondary, and tertiary structures, electrophoresis pattern, particle size distribution, zeta potential values, thermal stability, rheological behavior, and microstructure of small yellow croaker myofibrillar proteins (MPs) were studied. Four treatments were used for thawing small yellow croakers: flow water thawing (FWT), mono-frequency ultrasonic thawing (MUT), dual-frequency ultrasonic thawing (DUT), and tri-frequency ultrasonic thawing (TUT). Compared with fresh samples (FS), the MPs of the sample pretreated by DUT had non-significant effect on protein primary (including free amino groups and surface hydrophobicity), secondary, tertiary structures, electrophoresis pattern, and microstructure. MPs pretreated by DUT had less aggregation and degradation. Besides, DUT treatment increased the thermal stability of MPs. The ultrasound had significant effects on the rheological properties of MPs. Overall, DUT effectively minimized the changes in MPs structure and protected the protein thermal stability and rheological behavior during the thawing process.  相似文献   

16.
Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.  相似文献   

17.
The primary objective of the present study was to investigate the effectiveness of ultrasonic treatment time on the particle size, molecular weight, microstructure and solubility of milk fat globule membrane (rich in phospholipid, MPL) and milk protein concentrate (MPC). The mimicking human fat emulsions were prepared using modified proteins and compound vegetable oil and the structural, emulsifying properties and encapsulation efficiency of emulsions were evaluated. After ultrasonic treatment, the cavitation caused particle size decreased and structure change of both MPL and MPC, resulting in the enhancement of protein solubility. While, there was no significant change in molecular weight. Modified proteins by ultrasonic may cause a reduction in particle size and an improvement in emulsifying stability and encapsulation efficiency of emulsions. The optimal ultrasonic time to improve functional properties of MPL emulsion and MPC emulsion were 3 min and 6 min, respectively. The emulsifying stability of MPL emulsion was superior to MPC emulsion, which indicated that MPL is more suitable as membrane material to simulate human fat. Therefore, the obtained results can provide basis for quality control of infant formula.  相似文献   

18.
The aim of present study was to investigate the influences of ultrasound-assisted immersion freezing (UIF), immersion freezing (IF) and air freezing (AF) on the quality, moisture distribution and microstructure properties of the prepared ground pork (PGP) during storage duration (0, 15, 30, 45, 60, 75 and 90 days). UIF treatment significantly reduced the freezing time by 60.32% and 39.02%, respectively, compared to IF and AF (P < 0.05). The experimental results of quality evaluation revealed that the L* and b* values, juice loss, cooking loss, TBARS values and carbonyl contents were decreased in the UIF treated samples, while the a* value, peak temperatures (Tm), enthalpy (ΔH) and sulfhydryl contents were significantly higher than those of IF and AF treated samples (P < 0.05). In addition, low-field nuclear magnetic resonance (LF-NMR) and differential scanning calorimetry (DSC) analysis demonstrated that UIF inhibited the mobility of immobilized water and reduced the loss of immobilized and free water, and then a high water holding capacity (WHC) was achieved. Compared to the IF and AF treatments, the UIF treated PGP samples possessed better microstructure. Therefore, UIF could induce the formation of ice crystals with smaller size and more even distribution during freezing process, which contributed to less damage to the muscle tissue and more satisfied product quality.  相似文献   

19.
The effects of air thawing (AT), water immersion thawing (WT), microwave thawing (MT) and ultrasound combined with slightly acidic electrolyzed water thawing (UST) on the myofibrillar protein (MP) properties (surface hydrophobicity, solubility, turbidity, particle size and zeta potential), protein oxidation (carbonyl content and sulfhydryl content) and structure (primary, secondary and tertiary) of frozen mutton were investigated in comparison with fresh mutton (FM). The solubility and turbidity results showed that the MP properties were significantly improved in the UST treatment. UST treatment could effectively reduce the MP aggregation and enhance the stability, which was similar to the FM. In addition, UST treatment could effectively inhibit protein oxidation during thawing as well. The primary structure of MP was not damaged by the thawing methods. UST treatment could reduce the damage to MP secondary and tertiary structure during the thawing process compared to other thawing methods. Overall, the UST treatment had a positive influence in maintaining the MP properties by inhibiting protein oxidation and protecting protein structure.  相似文献   

20.
This study aimed to evaluate the potential of time-dependent (0, 15, 30, 60, 120 min) treatment of porcine-derived myofibrillar proteins (MPs) with high-intensity ultrasound (HIU) for utilizing them as a Pickering stabilizer and decipher the underlying mechanism by which HIU treatment increases the emulsification and dispersion stability of MPs. To accomplish this, we analyzed the structural, physicochemical, and rheological properties of the HIU-treated MPs. Myosin heavy chain and actin were observed to be denatured, and the particle size of MPs decreased from 3,342.7 nm for the control group to 153.9 nm for 120 min HIU-treated MPs. Fourier-transformed infrared spectroscopy and circular dichroism spectroscopy confirmed that as the HIU treatment time increased, α-helical content increased, and β-sheet decreased, indicating that the protein secondary/tertiary structure was modified. In addition, the turbidity, apparent viscosity, and viscoelastic properties of the HIU-treated MP solution were decreased compared to the control, while the surface hydrophobicity was significantly increased. Analyses of the emulsification properties of the Pickering emulsions prepared using time-dependent HIU-treated MPs revealed that the emulsion activity index and emulsion stability index of HIU-treated MP were improved. Confocal laser scanning microscopy images indicated that small spherical droplets adsorbed with MPs were formed by HIU treatment and that dispersion stabilities were improved because the Turbiscan stability index of the HIU-treated group was lower than that of the control group. These findings could be used as supporting data for the utilizing porcine-derived MPs, which have been treated with HIU for appropriate time periods, as Pickering stabilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号