首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 133 毫秒
1.
Silicon micro cantilevers are used as highly sensitive transducers for a wide range of physical, chemical and biochemical stimuli. Vibrating the cantilevers at higher-order resonant modes can achieve extra sensitivity, but the difficulty lies in determining exactly which modes are excited in the cantilever. This problem is exacerbated for cantilever sensors operating in liquid where the computational analysis of the resonance modes is very challenging. Using strobed interferometric microscopy, we are able to image the dynamic behavior of individual (100×500×1 μm3) cantilevers in an eight cantilever array over frequencies from 0–1 MHz. We show how some modifications to the interferometric microscope allow for the spatial visualization of 16 longitudinal modes of cantilevers working in liquid with nanometer-scale amplitudes. We also compare the shift in frequency response and reduction in quality factor for cantilevers resonating in liquid versus in air and simulations in vacuum. Because the resonant frequency spectrum is fairly complex and does not follow simple intuition, our work maps the actual behavior of cantilevers without having any specific knowledge of the sample and environment parameters and without the necessity of involved simulations and calculations.  相似文献   

2.
A simple, environmentally friendly method for preparing highly size-controlled spherical silver nanoparticles was developed that involved heating a mixture of silver-containing glass powder and an aqueous solution of glucose. The stabilizing agent for silver nanoparticles was found to be caramel, which was generated from glucose when preparing the nanoparticles. The particle size was independent of the reaction time, but it increased proportionally with the square root of the glucose concentration in the range 0.25–8.0 wt% (corresponding to particle sizes of 3.48 ± 1.83 to 20.0 ± 2.76 nm). Difference of the generation mechanism of silver nanoparticles between this inhomogeneous system and a system in which Ag+ was homogeneously dispersed was discussed.  相似文献   

3.
Silicon nanocrystals stabilized by an ionic liquid, dimethylimidazolium iodide, were synthesized by chemical reduction of SiBr4 with metallic Na in an organic solvent, diglyme. The nanoparticles were crystalline with a diamond cubic lattice and average size of 3.5 nm. Solid state 13C- and 29Si-NMR CP MAS spectra indicate the formation of imidazolium carbene, which ligates the Si atoms at the surface of the nanoparticles. The synthesized Si nanoparticles exhibit photoluminescence with an emission maximum in the red spectral range when excited at 320 nm. The origin of this luminescence is suggested to be mainly related to quantum confinement.  相似文献   

4.
Laser exposure of a suspension of either gold or palladium nanoparticles in aqueous solutions of UO2Cl2 of natural isotope abundance was experimentally studied. Picosecond Nd:YAG lasers at peak power of 1011–1013 W/cm2 at the wavelength of 1.06–0.355 μm were used as well as a visible-range Cu vapor laser at a peak power of 1010 W/cm2. The composition of colloidal solutions before and after laser exposure was analyzed using atomic absorption and gamma spectroscopy in the 0.06–1 MeV range of photon energy. Real-time gamma spectroscopy was used to characterize the kinetics of nuclear reactions during laser exposure. It was found that laser exposure initiated nuclear reactions involving both 238U and 235U nuclei via different channels in H2O and D2O. The influence of saturation of both the liquid and nanoparticles by gaseous H2 and D2 on the kinetics of nuclear transformations was found. Possible mechanisms of observed processes are discussed.  相似文献   

5.
The influence of ultrasonic processing parameters including reaction temperature (60, 70 and 80 °C), time (0, 15, 30, 45 and 60 min) and amplitude (70, 85 and 100%) on the formation and antioxidant activity of Maillard reaction products (MRPs) in a solution of chitosan and glucose (1.5 wt% at mass ratio of 1:1) was investigated. Selected chitosan-glucose MRPs were further studied to determine the effects of solution pH on the fabrication of antioxidative nanoparticles by ionic crosslinking with sodium tripolyphosphate. Results from FT-IR analysis, zeta-potential determination and color measurement indicated that chitosan-glucose MRPs with improved antioxidant activity were successfully produced using an ultrasound-assisted process. The highest antioxidant activity of MRPs was observed at the reaction temperature, time and amplitude of 80 °C, 60 min and 70%, respectively, with ∼ 34.5 and ∼20.2 μg Trolox mL−1 for DPPH scavenging activity and reducing power, respectively. The pH of both MRPs and tripolyphosphate solutions significantly influenced the fabrication and characteristics of the nanoparticles. Using chitosan-glucose MRPs and tripolyphosphate solution at pH 4.0 generated nanoparticles with enhanced antioxidant activity (∼1.6 and ∼ 1.2 μg Trolox mg−1 for reducing power and DPPH scavenging activity, respectively) with the highest percentage yield (∼59%), intermediate particle size (∼447 nm) and zeta-potential ∼ 19.6 mV. These results present innovative findings for the fabrication of chitosan-based nanoparticles with enhanced antioxidant activity by pre-conjugation with glucose via the Maillard reaction aided by ultrasonic processing.  相似文献   

6.
In cancer hyperthermia, ultrasound is considered as an appropriate source of energy to achieve desired therapeutic levels of heating. It is assumed that such a heating is targeted to cancer cells by using nanoparticles as sonosensitization agents. Here, we report the sonosensitizing effects of Nano-Graphene Oxide (NGO) and compare them with gold nanoparticles (AuNPs), Iron Oxide nanoparticles (IONPs).Experiments were conducted to explore the effects of nanoparticle type and concentration, as well as ultrasound power, on transient heating up of the solutions exposed by 1 MHz ultrasound. Nanoparticles concentration was selected from 0.25 to 2.5 mg/ml and the solutions were exposed by ultrasound powers from 1 to 8 W. Real time temperature monitoring was done by a thermocouple and obtained data was analyzed.Temperature profiles of various nanoparticle solutions showed the higher heating rates, in comparison to water. Heating rise was strongly depended on nanoparticles concentration and ultrasound power. AuNPs showed a superior efficiency in heat generation enhancement in comparison to IONPs and NGO.Our result supports the idea of sonosensitizing capabilities of AuNPs, IONPs, and NGO. Targeted hyperthermia may be achievable by preferential loading of tumor with nanoparticles and subsequent ultrasound irradiation.  相似文献   

7.
When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. Cavitation can be fatal to cells and is utilized to destroy cancer tumors. The existence of particles in liquid provides nucleation sites for cavitation bubbles and leads to decrease the ultrasonic intensity threshold needed for cavitation onset. In the present investigation, the effect of gold nanoparticles with appropriate amount and size on the acoustic cavitation activity has been shown by determining hydroxyl radicals in terephthalic acid solutions containing 15, 20, 28 and 35 nm gold nanoparticles sizes by using 1 MHz low level ultrasound. The effect of sonication intensity in hydroxyl radical production was considered.The recorded fluorescence signal in terephthalic acid solutions containing gold nanoparticles was considerably higher than the terephthalic acid solutions without gold nanoparticles at different intensities of ultrasound irradiation. Also, the results showed that the recorded fluorescence signal intensity in terephthalic acid solution containing finer size of gold nanoparticles was lower than the terephthalic acid solutions containing larger size of gold nanoparticles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors.  相似文献   

8.
Palladium/Iron (Pd/Fe) nanoparticles were prepared by using ultrasound strengthened liquid phase reductive method to enhance dispersion and avoid agglomeration. The dechlorination of 2,4-dichlorophenol (2,4-DCP) by Pd/Fe nanoparticles was investigated to understand its feasibility for an in situ remediation of contaminated groundwater. Results showed that 2,4-DCP was first adsorbed by Pd/Fe nanoparticles, then quickly reduced to o-chlorophenol (o-CP), p-chlorophenol (p-CP), and finally to phenol (P). The induction of ultrasound during the preparation of Pd/Fe nanoparticles further enhanced the removal efficiency of 2,4-DCP, as a result, the phenol production rates increased from 65% (in the absence of ultrasonic irradiation) to 91% (in the presence of ultrasonic irradiation) within 2 h. Our data suggested that the dechlorination rate was dependent on various factors including Pd loading percentage over Fe0, Pd/Fe nanoparticles availability, temperature, mechanical stirring speed, and initial pH values. Up to 99.2% of 2,4-DCP was removed after 300 min reaction with these conditions: Pd loading percentage over Fe0 0.3 wt.%, initial 2,4-DCP concentration 20 mg L?1, Pd/Fe dosage 3 g L?1, initial pH value 3.0, and reaction temperature 25 °C. The degradation of 2,4-DCP followed pseudo-first-order kinetics reaction and the apparent pseudo-first-order kinetics constant was 0.0468 min?1.  相似文献   

9.
In assistive technologies involving voice communication, an audio signal with specific shape is needed. In this regard, the design and fabrication of an electrostatic cantilever array is proposed. An array of four metallic micro-cantilevers with dimensions 650 μm × 200 μm × 0.3 μm is fabricated on the silicon substrate. The working principle is based on the electrostatic effect generated due to a conductive path applied between the electrodes. The results are taken from zinc oxide (ZnO) piezoelectric thin film that allows making contact with the vibrating cantilevers on a specified applied input impulse signals. The results demonstrated the switching action of the cantilevers that depends on the polarity of the input pulses. The results obtained are compared with the FEM based (COMSOL Multiphysics) model that is designed and analyzed prior to the experiment. Further, the experimental results showed a good agreement with the predicted values calculated by the simulated model for the input impulse signal applied synchronously to all the micro-cantilevers. However, for asynchronous actuation mode, the result of the as-fabricated device showed a variation than the simulated results. The vibrations are generated periodically from all the cantilevers and the output shows the resultant signals that are very much in the audible frequency range.  相似文献   

10.
Atmospheric‐pressure plasmas produced by dielectric barrier discharge can be used to grow nanoparticles from aqueous solutions containing ions from the platinum group metals (PGM: Pt, Pd, and Rh). The technology could also be applied to recover PGM from waste solutions. In plasma electrochemistry, PGM solutions act as a liquid electrode, and a counter electrode located near the surface of the liquid is used to generate the plasma (e.g., hydrogen, argon). The treatment synthesizes nanoparticles within minutes, which can be separated from the treated solutions. In the present study, small concentrations of PGM ions (1 × 10−3m ) are recuperated from aqueous solutions containing chloride ions. The efficiency of the process is quantified by elemental analysis, and the size of the colloids, measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Very high recovery yields are found for palladium (>99%), as well as for rhodium (>75%) and for platinum (>51%). Plasma electrochemistry is a very efficient and rapid process to recuperate PGM ions from water solutions (faster than conventional electrowinning) such as industrial waste, acid leach, and related effluents. The very fine and surfactant‐free nanoparticles could find promising applications as industrial and automotive catalysts.  相似文献   

11.
Synthesis and characterization of ITO nanoparticles were investigated in the present study. To synthesize the ITO nanoparticles flame spray pyrolysis was introduced. The average particle diameter increased with an increase in the molar concentration of the precursor. Raising the maximum flame temperature by controlling the gas flow rates also led to an increase in the average diameter of the particles. The crystalline ITO nanoparticles were synthesized, and their average primary particle diameters ranged from 11 to 20 nm. ITO thin films were prepared with a sol consisted of the ITO nanoparticles and a polymer binder. Effect of average particle diameter of the ITO nanoparticles on the transparency and the surface resistance of the ITO thin films were measured. As the average particle diameter increased, the transparency and the surface resistance decreased from 92 to 83% and from 1.0 × 104 to 0.8 × 104Ω/□, respectively.  相似文献   

12.
Muonium spin rotation experiments have been performed in a system of benzene in liquid isopentane solutions in the temperature range between 136 K and 295 K. The observed chemical reaction rate constants show a concave curve in an Arrhenius plot. These results are interpreted in terms of to a significant quantum tunnelling effect for muonium reaction in solutions. The oscillating frequency and the width of barrier for such reactions were found to be 400 cm?1 and 2.1 Å respectively by curve-shape analysis. The reaction barrier (6.0 kJ/mol) is found to be less than the activation energy due to viscous flow of the solvent.  相似文献   

13.
Core–shell nanostructures have been synthesized by plasma deposition in radio-frequency plasma reactor. Silica and KCl nanoparticles were encapsulated by deposition of isopropanol-based films of amorphous hydrogenated carbon. Through control of the deposition time, under constant deposition rate of 1 nm/min, particles are encapsulated in a layer of plasma polymer with thickness between 15 and 100 nm. Films are robust, chemically inert, thermally stable up to 250°C. The permeability of the shells is determined by depositing films of various thickness onto KCl nanoparticles and monitoring the dissolution of the core in aqueous solution. The dissolution profile is characterized by an initial rapid release, followed by a slow release that lasts up to 30 days for the thickest films. The profile is analyzed by Fickian diffusion through a spherical matrix. We find that this model captures very accurately the entire release profile except for the first 12 hours during which, the dissolution rate is higher than that predicted by the model. The overall diffusion coefficient for the dissolution of KCl is 3 × 10−21 m2/s.  相似文献   

14.
Laser fragmentation of Ag nanoparticles in Ag hydrosol was studied by simultaneous measurements of the transmitted fluence of the incident laser beam and the time evolution of the surface plasmon extinction (SPE) spectra. The experiments showed that the laser fragmentation in a small volume of hydrosol proceeds during first 20 pulses and then reaches saturation. The value of the transmitted fluence corresponding to saturation increases with incident pulse fluence, but the impact of the first pulse applied to the hydrosols shows an optical limitation. Fluences above 303 mJ/cm2 cause the formation of less stable, aggregating nanoparticles, while fluences below 90 mJ/cm2 do not provide sufficient energy for efficient fragmentation. The interval of fluences between 90–303 mJ/cm2 is optimal for fragmentation, since stable hydrosols constituted by small, non-aggregated nanoparticles are formed.  相似文献   

15.
High-energy ball milling has been shown to be a promising method for the fabrication of rare earth—transition metal nanopowders. In this work, NdCo5 nanoflakes and nanoparticles have been produced by a two-stage high-energy ball milling (HEBM), by first using wet HEBM to prepare precursor nanocrystalline powders followed by surfactant-assisted HEBM. NdCo5 flakes have a thickness below 150 nm and an aspect ratio as high as 102–103; the nanoparticles have an average size of 7 nm. Both the nanoparticles and nano-flakes exhibited high coercivities at low temperatures, with values at 50 K of 3 and 3.7 kOe, respectively. The high values of coercivity can be attributed to the large surface anisotropy of nanoparticles that leads to an effective uniaxial-type of behavior in contrast to the planar anisotropy of the bulk samples. Angle-dependent magnetization measurements at different temperatures were used to determine the spin reorientation transitions in the nanopowders and nanoparticles. The nanoparticles showed spin reorientation temperatures, T SR1 = 276 and T SR2 = 237 K which are lower when compared with the values of 290 and 245 K, respectively for bulk.  相似文献   

16.
The HoCo2 nanoparticles are found to be stable in air without any shell protection. The HoCo2 nanoparticles display superparamagnetic properties between their blocking temperature of 40 K and Curie temperature of 78 K. The magnetic-entropy change increases with decreasing temperature at a certain magnetic-field change, which is ascribed to the competition between the Zeeman energy and thermal-agitation energy at low temperatures. A large magnetic-entropy change of 19.4 J kg−1 K−1 was found at 7.5 K in an applied-field change from 1 to 7 T, while 6.1 J kg−1 K−1 was achieved in a low field change of 1 T. HoCo2 nanoparticles are useful for application of magnetic refrigeration at low temperatures.  相似文献   

17.
A Stokes-Mueller matrix polarimetry system consisting of a polarization scanning generator (PSG) and a high-accuracy Stokes polarimeter is used to sense the glucose concentration in aqueous solutions with and without scattering effects, respectively. In the proposed system, an electro-optic (EO) modulator driven by a saw-tooth waveform voltage is used to perform full state of polarization (linear/circular) scanning, while a self-built Stokes polarimeter is used to obtain dynamic measurements of the output polarized light intensity. It is shown that the measured output Stokes vectors have an accuracy of 10−4, i.e., one order higher than that of existing commercial Stokes polarimeters. The experimental results show that the optical rotation angle varies linearly with the glucose concentration over the range of 0-0.5 g/dl. Moreover, glucose sensing is successfully achieved at concentrations as low as 0.02 g/dl with a resolution of 10−6 deg/mm and an average deviation of 10−4 deg. In general, the polarimetry system proposed in this study provides a fast and reliable method for measuring the Stokes vectors, and thus has significant potential for biological sensing applications.  相似文献   

18.
Random fiber laser is obtained by end pumping a hollow optical fiber (HOF) filled with a dispersive solution of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles and laser dye pyrromethene 597 (PM597) in carbon disulfide (CS2), in which the concentration is 1.5×10?2 M for PM597 and 18.5 wt% for POSS, respectively. It is found that the pump light at the one end of the liquid core optical fiber (LCOF) can pass the whole length of LCOF because the POSS nanoparticles were dispersed in CS2 at a molecular level (1–3 nm) with high stability and without sedimentation. Above the threshold pump energy (~0.81 mJ) the random fiber laser appears coherent and resonant feedback multimode lasing in the weakly scattering system. For the LCOF containing PM597 with the same concentration and no POSS nanoparticles, there occurs only ASE that can be observed under the same experimental condition.  相似文献   

19.
In this study, an environmental friendly process for the synthesis of silver nanoparticles (AgNPs) using a fungus Aspergillus tamarii has been investigated. The process of silver ion reduction by the fungal extracellular filtrate was spontaneous which lead to the development of an easy process for synthesis of silver nanoparticles. The AgNPs formed were characterized using UV–Visible spectrum, FTIR, and SEM. The results revealed that silver ions reduction by the fungal extracellular filtrate started at 420 nm after 0.5 h of incubation time. The FTIR peaks were observed at 1393, 1820, 2727, and 3545 cm−1. The SEM result showed the distribution of spherical AgNPs ranging from 25 to 50 nm.  相似文献   

20.
均匀流中近壁面垂直流向振荡圆柱水动力特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
陈蓥  付世晓  许玉旺  周青  范迪夏 《物理学报》2013,62(6):64701-064701
对均匀来流下靠近壁面处在垂直流向做强迫振荡运动的光滑圆柱的水动力特性进行了试验研究. 试验在拖曳水池中进行, 雷诺数为2× 105, 通过采集顺流向和垂直流向的力, 得到了阻力系数、升力系数、相位角等与间隙比、振荡频率和振幅之间的关系. 通过研究得到如下结论: 1)振荡圆柱的平均阻力系数在近壁面处随间隙比的减小而骤降; 2)振荡圆柱泄涡受到完全抑制的临界间隙比要小于静止圆柱; 3)近壁面的存在对振荡圆柱的能量传递有着重要的影响, 自由边界圆柱强迫振荡所得到的水动力系数不能用来预报海底管道的涡激振动; 4)对于振荡圆柱, 附加质量系数只有在一定的频率范围内才是定值, 且在低频率区域其绝对值随间隙比减小而增大; 5)圆柱在进行强迫振荡时, 其平均阻力系数、振荡阻力系数和振荡升力系数均随无因次振幅的增加而增大. 关键词: 海底管道 强迫振荡 水动力特性 涡激振动  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号