首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2014,14(5):744-748
Raman scattering spectroscopy has been performed on high quality Co-doped ZnO epitaxial films, which were grown on Al2O3 (0001) by oxygen-plasma assisted molecular beam epitaxy. Raman measurements revealed two local vibration modes (LVMs) at 723 and 699 cm−1 due to the substitution of Co2+ in wurtzite ZnO lattice. The LVM at 723 cm−1 is found to be an elemental sensitive vibration mode for Co substitution. The LVM at 699 cm−1 can be attributed to enrichment of Co2+ bound with oxygen vacancy, the cobalt–oxygen vacancy–cobalt complexes, in Zn1−xCoxO films associated with ferromagnetism. The intensity of LVM at 699 cm−1, as well as saturated magnetization, enhanced after the vacuum annealing and depressed after oxygen annealing.  相似文献   

2.
A resonant photoacoustic cell intended for laser-spectroscopy gas sensing is represented. This cell is a miniature imitation of a macro-scale banana-shaped cell developed previously. The parameters, which specify the cavity shape, are chosen so as not only to provide optimal cell operation at a selected acoustic resonance but also to reduce substantially the cell sizes. A miniaturized prototype cell (the volume of acoustic cavity of ∼5 mm3) adapted to the narrow diffraction-limited beam of near-infrared laser is produced and examined experimentally. The noise-associated measurement error and laser-initiated signals are studied as functions of modulation frequency. The background signal and the useful response to light absorption by the gas are analyzed in measurements of absorption for ammonia in nitrogen flow with the help of a pigtailed DFB laser diode oscillated near a wavelength of 1.53 μm. The performance of prototype operation at the second longitudinal acoustic resonance (the resonance frequency of ∼32.9 kHz, Q-factor of ∼16.3) is estimated. The noise-limited minimal detectable absorption normalized to laser-beam power and detection bandwidth is ∼8.07 × 10−8 cm−1 W Hz−1/2. The amplitude of the background signal is equivalent to an absorption coefficient of 2.51 × 10−5 cm−1. Advantages and drawbacks of the cell prototype are discussed. Despite low absorption-sensing performance, the produced miniaturized cell prototype shows a good capability of gas-leak detection.  相似文献   

3.
To achieve high-performance n-type PbTe-based thermoelectric materials, this work provides a synergetic strategy to improve electrical transport property with indium (In) element doping and reduces thermal conductivity with sulfur (S) element alloying. In n-type PbTe, In doping can tune the carrier density in the whole working temperature range, causing the carrier density to increase from 2.18 × 1019 cm−3 at 300 K to 4.84 × 1019 cm−3 at 823 K in Pb0.98In0.005Sb0.015Te. The optimized carrier density can further modulate electrical conductivity and Seebeck coefficient, finally contributing to a substantial increase of power factor, and a maximum power factor increase from 19.7 µW cm−1 K−2 in Pb0.985Sb0.015Te to 28.2 µW cm−1 K−2 in Pb0.9775In0.0075Sb0.015Te. Based on the optimally In-doped PbTe, S alloying is introduced to suppress phonon propagation by forming a complete solid solution, which could effectively reduce lattice thermal conductivity and simultaneously benefit carrier mobility to maintain high power factor. With S alloying, the minimum lattice thermal conductivity decreases from 0.76 Wm−1 K−1 in Pb0.985Sb0.015Te to 0.42 Wm−1 K−1 in Pb0.98In0.005Sb0.015Te0.88S0.12. Combining the advantages of both In doping and S alloying, the peak ZT value and averaged ZT (ZTave) (300–873 K) are boosted from 1.0 and 0.60 in Pb0.985Sb0.015Te to 1.4 and 0.87 in Pb0.98In0.005Sb0.015Te0.94S0.06.  相似文献   

4.
《Current Applied Physics》2014,14(6):850-855
Transparent and conductive thin films of fluorine doped zinc tin oxide (FZTO) were deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. The effect of annealing temperature on the structural, electrical and optical performances of FZTO thin films has been studied. FZTO thin film annealed at 600 °C shows the decrease in resistivity 5.47 × 10−3 Ω cm, carrier concentration ∼1019 cm−3, mobility ∼20 cm2 V−1 s−1 and an increase in optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures which is well explained by Burstein–Moss effect. The optical transmittance of FZTO films was higher than 80% in all specimens. Work function (ϕ) of the FZTO films increase from 3.80 eV to 4.10 eV through annealing and are largely dependent on the amounts of incorporated F. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.  相似文献   

5.
The intensive consumption of pharmaceuticals and drugs in the last decades has led to their increased concentrations in wastewaters from industrial sources. The present paper deals, for the first time, with the sonochemical degradation and mineralization of furosemide (FSM) in water. FSM is a potent loop diuretic used to treat fluid build-up due to heart failure, liver scarring, or kidney disease. The influence of several operating parameters such as acoustic intensity, ultrasonic frequency, initial FSM concentration, solution’s pH, nature of the dissolved gas (Ar, air and N2) and radical scavengers (2-propanol and tert-butanol) on the oxidation of FSM was assessed. The obtained results showed that the degradation rate of the drug increased significantly with the increase of the acoustic intensity in the range of 0.83 to 4.3 W cm−2 and decreased with the augmentation of the frequency in the range of 585–1140 kHz. It was also found that the initial rate of the sonolytic degradation of FSM increased with the increase of its initial concentration (2, 5, 10, 15 and 20 mg/L). The most significant degradation was achieved in acidic conditions at pH 2, while in terms of saturating gas, the rate of FSM degradation decreased in the order of Ar > air > N2. The FSM degradation experiments with radical scavengers showed that the diuretic molecule degraded mainly at the interfacial region of the bubble by hydroxyl radical attack. Additionally, in terms of acoustic conditions, the sono-degradation of 30.24 µmol L-1 of FSM solution demonstrate an optimal performance at 585 kHz and 4.3 W/cm2, the results indicated that even if the ultrasonic action eliminated the total concentration of FSM within 60 min, a low degree of mineralization was obtained due to the by-products formed during the sono-oxidation process. The ultrasonic process transforms FSM into biodegradable and environmentally friendly organic by-products that could be treated in a subsequent biological treatment. Besides, the efficiency of the sonolytic degradation of FSM in real environmental matrices such as natural mineral water and seawater was demonstrated. Consequently, the sonochemical advanced oxidation process represent a very interesting technique for the treatment of water contaminated with FSM.  相似文献   

6.
《Current Applied Physics》2015,15(9):1010-1014
A polycrystalline MgZnO/ZnO bi-layer was deposited by using a RF co-magnetron sputtering method and the MgZnO/ZnO bi-layer TFTs were fabricated on the thermally oxidized silicon substrate. The performances with varying the thickness of ZnO layer were investigated. In this result, the MgZnO/ZnO bi-layer TFTs which the content of Mg is about 2.5 at % have shown the enhancement characteristics of high mobility (6.77–7.56 cm2 V−1 s−1) and low sub-threshold swing (0.57–0.69 V decade−1) compare of the ZnO single layer TFT (μFE = 5.38 cm2 V−1 s−1; S.S. = 0.86 V decade−1). Moreover, in the results of the positive bias stress, the ΔVon shift (4.8 V) of MgZnO/ZnO bi-layer is the 2 V lower than ZnO single layer TFT (ΔVon = 6.1 V). It reveals that the stability of the MgZnO/ZnO bi-layer TFT enhanced compared to that of the ZnO single layer TFT.  相似文献   

7.
《Solid State Ionics》2006,177(37-38):3285-3296
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La0.6Sr0.4)0.99CoO3−δ (LSC40) and La0.85Sr0.15CoO3−δ (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described using the itinerant electron model. The electrical conductivity, σ, of the materials is high (σ > 500 S cm 1) in the measured temperature range (650–1000 °C) and oxygen partial pressure range (0.209–10 4 atm). At 900 °C the electrical conductivity is 1365 and 1491 S cm 1 in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40. Using electrical conductivity relaxation the chemical diffusion coefficient of oxygen was determined. It was found that accurate values of the chemical diffusion coefficient could only be obtained using a sample with a porous surface coating. The porous surface coating increased the surface exchange reaction thereby unmasking the chemical diffusion coefficient. The ionic conductivity deduced from electrical conductivity relaxation was determined to be 0.45 S cm 1 and 0.01 S cm 1 at 1000 and 650 °C, respectively. The activation energy for the ionic conductivity at a constant vacancy concentration (δ = 0.125) was found to be 0.90 eV.  相似文献   

8.
《Solid State Ionics》2006,177(26-32):2245-2248
Development of new mixed conductors with both high oxygen permeability and phase stability under reducing atmosphere is indispensable for realizing practical MIEC systems of oxygen separation and membrane reactor. In this study, a family of Co-free Fe-based perovskite-type oxides, (Ba,Sr)(Fe,Mn)O3−δ was prepared and their oxygen permeability and phase stability against reduction were examined. Optimum Ba doping concentration at A site was found around 30%, and Ba0.3Sr0.7FeO3−δ showed highest oxygen permeability (3.0 cm3(STP)cm 2 min 1 at 900 °C) in this study. Perovskite-type oxides of the Ba–Mn–Fe–O and Ba–Sr–Mn–Fe–O systems with appropriate compositions preserved the structure even after annealing in the reducing atmosphere of 5% H2/N2 at 1000 °C, showing their exceeding reduction tolerance.  相似文献   

9.
The bay-capping mechanism on PAH armchair edges and the kinetics of acetylene addition to 6–6–5 and 5–6–5 bays have been explored by ab initio/RRKM-ME calculations. The bays on the edges were modeled by C21H11 and C20H9 radicals produced by H abstractions from 7H-benzo[c]cyclopenta[e]pyrene and dicyclopenta[cf]pyrene. The C20H9 + C2H2 reaction is shown to have a low entrance barrier and to rapidly form the capped product, indaceno[2,1,8,7-cdefg]pyrene, along with ethynyl substituted dicyclopenta[cf]pyrene at temperatures above 1400 K. The reactivity of C21H11 is shown to be governed by the location of the unpaired electron; the π radical R1 formed by H abstraction from the CH2 group in 7H-benzo[c]cyclopenta[e]pyrene reacts with C2H2 very slowly owing to a high entrance barrier, with the bay-capping rate constant approaching 10−16 cm3 molecule−1 s−1 only at temperatures above 2000 K. This result reaffirms that the growth of π aryl radicals via acetylene addition is inefficient and reflects the generally low reactivity of such radicals where the spin density is highly delocalized over the entire polyaromatic system. Alternatively, the σ C21H11 radical R2 produced by H abstraction from the five-membered ring at the bay rapidly reacts with C2H2 forming the bay-capped product, with the rate constant on the order of 10−12 cm3 molecule−1 s−1 at T ≥ 1500 K. Rate constants for the capping reactions at the 6–6–5 and 5–6–5 bays are compared with those at the 6–0–6, 6–6–6, and 6–5–6 bays. The site-specific bay-capping rate constants have been utilized in kMC simulations of the PAH growth and the results showed measurable differences when the 6–6–5 and 5–6–5 bay-capping reactions are taken into account, including an increase of the growth rate and the formation of closed-shell PAH and a rise of the number of embedded five-membered rings accompanied with a slight decrease of their overall amount.  相似文献   

10.
《Applied Surface Science》2005,239(3-4):481-489
The current–voltage (IV) characteristics of Al/SnO2/p-Si (MIS) Schottky diodes prepared by means of spray deposition method have been measured at 80, 295 and 350 K. In order to interpret the experimentally observed non-ideal Al/SnO2/p-Si Schottky diode parameters such as, the series resistance Rs, barrier height ΦB and ideality factor n, a novel calculation method has been reported by taking into account the applied voltage drop across interfacial oxide layer Vi and ideality factor n in the current transport mechanism. The values obtained for Vi were subtracted from the applied voltage values V and then the values of Rs were recalculated. The parameters obtained by accounting for the voltage drop Vi have been compared with those obtained without considering the above voltage drop. It is shown that the values of Rs estimated from Cheung’s method were strongly temperature-dependent and decreased with increasing temperature. It is shown that the voltage drop across the interfacial layer will increase the ideality factor and the voltage dependence of the IV characteristics. The interface state density Nss of the diodes has an exponential growth with bias towards the top of the valance band for each temperature; for example, from 2.37 × 1013 eV−1 cm−2 in 0.70−Ev eV to 7.47 × 1013 eV−1 cm−2 in 0.62−Ev eV for 295 K. The mean Nss estimated from the IV measurements decreased with increasing the temperature from 8.29 × 1013 to 2.20 × 1013 eV−1 cm−2.  相似文献   

11.
The rate coefficient k1 for NH2 + N2H4 was measured to be (5.4 ± 0.4) × 10−14 cm3 molecule−1 s−1 at 296 K. NH2 was generated by pulsed laser photolysis of NH3 at 193 nm, and monitored as a function of time by pulsed laser-induced fluorescence excited at 570.3 nm under pseudo-first order conditions in the presence of excess N2H4 in an Ar bath gas. This reaction was also investigated computationally, with geometries and scaled frequencies obtained with M06-2X/6-311+G(2df,2p) theory, and single-point energies from CCSD(T)-F12b/cc-pVTZ-F12 theory, plus a term to correct approximately for electron correlation through CCSDT(Q). Three connected transition states are involved and rate constants were obtained via Multistructural Improved Canonical Variational Transition State Theory with Small Curvature Tunneling. Combination of experiment and theory leads to a recommended rate coefficient for hydrogen abstraction of k1 = 6.3 × 10−23 T3.44 exp(+289 K/T) cm3 molecule−1 s−1. The minor channel for H + N2H4 forming NH2 + NH3 was characterized computationally as well, to yield 5.0 × 10−19 T2.07 exp(-4032 K/T) cm3 molecule−1 s−1. These results are compared to several discordant prior estimates, and are employed in an overall mechanism to compare with measurements of half-lives of hydrazine in a shock tube.  相似文献   

12.
《Solid State Ionics》2006,177(19-25):1757-1760
The oxygen ion and electron transport in SrFe1−xScxO3−δ  (x = 0.1–0.3) system at 700–950 °C were studied analyzing the total conductivity dependencies on the oxygen partial pressure, pO2. The conductivity measurements were performed both under reducing conditions (10 19  pO2  10 8 atm) comprising the electron-hole equilibrium point, and in oxidizing atmospheres (10 5  pO2  0.5 atm) which are characterized by extensive variations of the oxygen content studied by coulometric titration technique. The incorporation of 10% Sc3+ cations into the iron sublattice suppresses transition of the cubic perovskite phase into vacancy-ordered brownmillerite, thus improving ion conduction at temperatures below 850 °C. When scandium content increases, the ion conductivity becomes considerably lower. The hole mobility is thermally-activated and varies in the range of 0.001 to 0.05 cm2 V 1 s 1, increasing with oxygen concentration and decreasing on Sc doping.  相似文献   

13.
《Current Applied Physics》2020,20(12):1386-1390
The use of SiO2/4H–SiC metal-oxide-semiconductor field-effect transistors (MOSFETs) can be problematic due to high interface state density (Dit) and low field-effect mobility (μfe). Here, we present a tetra-ethyl-ortho-silicate (TEOS)-based low-pressure chemical vapor deposition (LPCVD) method for fabricating the gate oxide of 4H–SiC MOSFETs using nitric oxide post-deposition annealing. SiO2/4H–SiC MOS capacitors and MOSFETs were fabricated using conventional wet and TEOS oxides. The measured effective oxide charge density (Qeff) and Dit of the TEOS-based LPCVD SiO2/4H–SiC MOS capacitor with nitridation were 4.27 × 1011 cm−2 and 2.99 × 1011 cm−2eV−1, respectively. We propose that the oxide breakdown field and barrier height were dependent on the effective Qeff. The measured μfe values of the SiO2/4H–SiC MOSFETs with wet and TEOS oxides after nitridation were, respectively, 11.0 and 17.8 cm2/V due to the stable nitrided interface between SiO2 and 4H–SiC. The proposed gate stack is suitable for 4H–SiC power MOSFETs.  相似文献   

14.
Transparent glass–ceramics containing zinc–aluminum spinel (ZnAl2O4) nanocrystals doped with tetrahedrally coordinated Co2+ ions were obtained by the sol–gel method for the first time. The gels of composition SiO2–Al2O3–ZnO–CoO were prepared at room temperature and heat-treated at temperature ranging 800–950 °C. When the gel samples were heated up to 900 °C, ZnAl2O4 nanocrystals were precipitated. Co2+ ions were located in tetrahedral sites in ZnAl2O4 nanocrystals. X-ray diffraction analysis shows that the crystallite sizes of ZnAl2O4 crystal become large with the heat-treatment temperature and time, and the crystallite diameter is in the range of 10–15 nm. The dependence of the absorption and emission spectra of the samples on heat-treatment temperature were presented. The difference in the luminescence between Co2+ doped glass–ceramic and Co2+ doped bulk crystal was analysed. The crystal field parameter Dq of 423 cm−1 and the Racah parameters B of 773 cm−1 and C of 3478.5 cm−1 were calculated for tetrahedral Co2+ ions.  相似文献   

15.
By introducing the covalent effect into the Girerd–Journaux–Kahn's magnetic theory a more general magnetic exchange formula for describing transition-metal ion pairs in covalent complex molecules has been established. By this formula and by the use of our double-slater-type-function (DSF) calculation procedure the relationship between the magnetic exchange coupling parameter J and the covalent factor N has been studied. It is shown that for the oxo-bridged Fe(III) dimer there exists a nearly linear relation between J and N, and that the stronger is the covalent effect the stronger is the antiferromagnetic coupling interaction. It is also shown that in a series of model molecules of methemerythrin derivatives, such as in (FeSalen)2O·2py, FeSalenCl·(CH3NO2)x, enH2[(FeHEDTA)2O]·6H2O, Na4[(FeHEDTA)2O]·12H2O, [(Fe(terpy))2O](NO3)4·H2O and Fe(terpy)Cl3, there are about 40% antiferromagnetic contributions that arise from the covalent effect, and that the theoretical values J=−95.5 to −100.7 cm−1 are in good agreement with the experimental findings J=−90 to −105 cm−1 for those model molecules.  相似文献   

16.
1,3,5-Hydroxy-triazo-benzene (H-TAB) was synthesized through a coupling-oxidation protocol. Temperature-controlled UV, IR, and ab initio calculation were carried out to investigate the cis–trans thermal isomerization of H-TAB. In temperature-controlled UV experiments, λmax of the π–π1 band and for the trans conformation at 335 nm and that for the cis form at 282 nm are shifted by increased temperature; band intensities of the π–π1 transition decrease and λmax of the π–π1 band is shifted toward the high-energy region. The maximum peak at 2922 cm−1 is shifted to 2926 cm−1, and that at 2852 cm−1 is shifted to 2856 cm−1 at increased temperature in the temperature-controlled IR experiment. Ab initio calculation reveals that the cis conformation of H-TAB is more stable than the trans form because the cis form has less spatial repulsion. Therefore, the ground-state energy difference induced by steric repulsion of the benzene unit is the driving force of the blue shift in the thermal IR and UV spectra for the triazo-benzene.  相似文献   

17.
Lead-based Pb0.97La0.02(Zn1/3Nb2/3)0.3(Zr0.53Ti0.47)0.7O3 (PLZnNZT) transparent ceramics with the addition of 2 wt% excess PbO were prepared by hot-pressing sintering method. The hot-pressing sintered PLZnNZT ceramics exhibit dense and large-grained microstructure, and perovskite structure with distorted cubic-like symmetry. The ceramics exhibit normal ferroelectric-like dielectric behavior with slightly diffused ferroelectric phase transition characteristic. The PLZnNZT ceramics exhibit fully developed, symmetric and saturated PE hysteresis loop and large piezoelectric constant d33, being 468 pC/N. The ceramics with 120 μm thickness exhibit maximum transmittance of 53% at 850 nm when Fresnel losses was not included, almost totally transparent in the mid IR region (2500–5600 nm), and low-lying optical band gap energy Eg of 3.23 eV. Three diffused Raman bands centering around 240 cm−1, 560 cm−1 and 750 cm−1 are observed by micro-Raman spectroscopy, which can be attributed to F2g [BO6] bending vibration, A1g [BO6] stretching vibration and “soft mode” mixed by the bending and stretching vibrations, respectively, confirming the normal ferroelectric-like characteristic.  相似文献   

18.
For the first time, we have investigated the beneficial effects of non-cavitating coupling fluids and their moderate overpressures in enhancing mass-transfer and acoustic energy transfer in a double cell micro-sonoreactor. Silicon and engine oils of different viscosities were used as non-cavitating coupling fluids. A formulated monoethylene glycol (FMG), which is a regular cooling fluid, was also used as reference. It was found that silicon oil yielded a maximum acoustic energy transfer (3.05 W/cm2) from the double jacketed cell to the inner cell volume, at 1 bar of coupling fluid overpressure which was 2.5 times higher than the regular FMG cooling fluid. It was also found that the low viscosity engine oil had a higher acoustic energy value than that of the high viscosity engine oil. In addition, linear sweep voltammograms (LSV) were recorded for the quasi-reversible Fe2+/Fe3+ redox couple (equimolar, 5 × 10−3 M) on a Pt electrode in order to determine the mass-transport limited current density (jlim) and the dimensionless Sherwood number (Sh). From the LSV data, a statistical analysis was performed in order to determine the contribution of acoustic cavitation in the current density variation |Δj|average. It was found that silicon oil at 1 bar exhibited a maximum current density variation, |Δj|average of ~2 mA/cm2 whereas in the absence of overpressure, the high viscosity engine oil led to a maximum |Δj|average which decreased gradually with increasing coupling fluid overpressure. High viscosity engine oil gave a maximum Sh number even without any overpressure which decreased gradually with increasing overpressure. The Sh number for silicon oil increased with increasing overpressure and reached a maximum at 1 bar of overpressure. For any sonoelectrochemical processes, if the aim is to achieve high mass-transfer and acoustic energy transfer, then silicon oil at 1 bar of overpressure is a suitable candidate to be used as a coupling fluid.  相似文献   

19.
Commercial application of supercapacitors (SCs) requires high mass loading electrodes simultaneously with high energy density and long cycle life. Herein, we have reported a ternary multi-walled carbon nanotube (MWCNT)/MnO2/reduced graphene oxide (rGO) nanocomposite for SCs with commercial-level mass loadings. The ternary nanocomposite was synthesized using a facile ultrasound-assisted one-pot method. The symmetric SC fabricated with ternary MWCNT/MnO2/rGO nanocomposite demonstrated marked enhancement in capacitive performance as compared to those with binary nanocomposites (MnO2/rGO and MnO2/MWCNT). The synergistic effect from simultaneous growth of MnO2 on the graphene and MWCNTs under ultrasonic irradiation resulted in the formation of a porous ternary structure with efficient ion diffusion channels and high electrochemically active surface area. The symmetric SC with commercial-level mass loading electrodes (∼12 mg cm−2) offered a high specific capacitance (314.6 F g−1) and energy density (21.1 W h kg−1 at 150 W kg−1) at a wide operating voltage of 1.5 V. Moreover, the SC exhibits no loss of capacitance after 5000 charge−discharge cycles showcasing excellent cycle life.  相似文献   

20.
《Solid State Ionics》2006,177(7-8):703-707
A polyphosphazene [NP(NHR)2]n with oligo[propylene oxide] side chains − R = –[CH(CH3)–CH2O]m–CH3 (m = 6  10) was synthesized by living cationic polymerisation and polymer-analogue substitution of chlorine from the intermediate precursor [NPCl2]n using the corresponding primary amine RNH2. The polymer had an average molecular weight of 3.3 × 105 D. Polymer electrolytes with different concentrations of dissolved lithium triflate (LiCF3SO3) were prepared. Mechanically stable polymer electrolyte membranes were formed using UV radiation induced crosslinking of the polymer salt mixture in the presence of benzophenone as photoinitiator. The glass transition temperature of the parent polymer was found to be − 75 °C before cross linking. It increases after crosslinking and with increasing amounts of salt to a maximum of − 55 °C for 20 wt.% LiCF3SO3. The ionic conductivity was determined by impedance spectroscopy in the temperature range 0–80 °C. The highest conductivity was found for a salt concentration of 20 wt.% LiCF3SO3: 6.5 × 10 6 S·cm 1 at 20 °C and 2.8 × 10 4 S cm 1 at 80 °C. The temperature dependence of the conductivities was well described by the MIGRATION concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号