首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The research progress in colloidal motors, synthetic colloids that convert environmental energy and swim in water, has attracted much attention in recent years. Yet, its rapid development and interdisciplinary nature has created a hurdle for beginners, especially students and postdocs. In light of this challenge, this tutorial review gives a bird's eye overview of the research field of colloidal motors, presenting in a beginner‐friendly manner subjects including the definition and significance of colloidal motors, physical challenges associated with their motion at the microscale, their fabrication and propulsion mechanisms, functionalities that enable their applications, and essential tools and techniques useful for beginners. Emphasis on each aspect is placed on elucidating and connecting important concepts and ideas, rather than on details and individual references. An appendix of recent review articles grouped by subjects on colloidal motors is given in the Supporting Information. This article equips beginners with a clear big picture and essential knowledge that will facilitate future explorations.  相似文献   

2.
肽基超分子胶体是基于肽分子间超分子作用,自发形成且具有有序分子排布及规整结构,兼具传统胶体及超分子特性的组装体系。利用超分子弱相互作用构筑功能性胶体,不仅是人们对生命组装进程深入理解的有效手段,也是实现优异的超分子材料的重要途径。肽分子具有组成明确、性能可调、生物安全性高及可降解等优势,是超分子化学、胶体与界面化学领域重要的组装基元。基于肽的超分子自组装,能够实现多尺度、多功能的生物胶体的构筑,被广泛应用于医药、催化、能源等领域。如何通过对肽序列的设计及分子间作用力的调控,实现对胶体结构和功能的精确控制,是近年来研究的重要课题之一。从分子尺度研究和揭示超分子胶体的组装过程及物理化学机制,探究胶体结构与功能的关系,是实现超分子结构和功能化的重要内容。本文基于"分子间作用的调控"及"结构与功能的关系"两个基本科学问题,系统地综述了肽基超分子胶体的组装机制、结构与功能,以及研究现状。  相似文献   

3.
We report the reconfigurable assembly of rod-shaped eutectic gallium–indium alloy (EGaIn) liquid metal colloidal motors by mimicking the growth behavior of a dandelion. EGaIn nanorods with a diameter of 210 nm and a length of 850 nm were synthesized via an ultrasound-assisted physical dispersion method. The nanorods possess a core–shell structure with a 30 nm GaOOH shell and zero-valent liquid core. The EGaIn motors move autonomously at a speed of 41.2 μm s−1 under an acoustic field. By modulating the frequency of the applied acoustic field, the EGaIn colloidal motors self-organize into various striped and circular patterns, followed by a flower-like cluster. The dandelion-like EGaIn colloidal motor clusters move collectively and redisperse when the applied acoustic frequency is changed. Numerical simulations reveal that the flower-like clusters are created by the acoustic propulsion in combination with steric repulsion and hydrodynamics.  相似文献   

4.
Supramolecular nanoassemblies are gaining increasing importance as promising new materials with considerable potential for novel and promising applications. Within supramolecular nanoassemblies the connectivity of the monomeric units is based on reversible noncovalent interactions, like van der Waals interactions, hydrogen bonding, or ionic interactions. As the strength of these interactions depends on the molecular surrounding, the formation of nanoassemblies in principle can be controlled externally by changing the environment and/or the molecular shape of the underlying monomer. This way it is not only possible to switch the self-assembly on or off, but also to change between different aggregation states. In this minireview we present some recent selected approaches to supramolecular stimuli-responsive nanoassemblies.  相似文献   

5.
Active particles can autonomously propel and have the tendency to organize into high-order ensembles and phases that evolve and reconfigure. They have emerged as a focused subject in contemporary colloid science, holding great promise in advancing fields, such as cargo delivery, sensing, micromachinery and microrobotics, and materials science. Realization of the full potentials of active particles requires delicate control of their dynamics in propulsion and assembly, which is challenging due to the out-of-equilibrium nature of such systems. Recently, systematically engineered colloidal shapes have been exploited as an effective means to tune and even program the dynamic behaviors of active particles. Various anisotropic particles, with controlled geometries and possessing either homogeneous or heterogeneous composition, have been fabricated, regulating how particles actively propel, interact, and assemble under several chemical and physical stimuli. In this paper, we provide an overview of these progresses. We also briefly discuss our view on the future directions and challenges.  相似文献   

6.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   

7.
梅雷  石伟群 《化学通报》2020,83(5):387-393
锕系超分子化学是锕系元素化学的重要研究领域,可以为乏燃料后处理的配位化学基础研究提供重要信息,并为探索锕系功能材料在发光、传感、催化和分离等方面的功能应用提供关键材料体系。本文介绍了基于锕系金属离子的金属-有机超分子组装体这一新兴领域的最新研究进展。从锕系超分子组装体的构筑原理出发并结合笔者自身研究情况,对基于主客体准轮烷配体的锕系-轮烷配位聚合物、具有闭合结构的锕系配位组装体和基于超分子相互作用的锕系超分子聚合物这三类典型的锕系超分子组装体的研究进展进行了梳理和总结阐述。期望为未来新型锕系超分子组装体的设计合成提供参考,促进相关领域的进步和发展。  相似文献   

8.
含有氢键供体基团构筑的大环化合物因其结构中具有可以提供氢键供体的N—H基团,可以为大环化合物的主客体化学提供额外的分子间作用力,在分子识别、自组装以及超分子催化等领域被广泛应用.综述了近十年基于(硫)脲键、酰胺键构筑的大环化合物的合成方法及其在分子识别中的最新研究进展.为今后此类大环化合物的合成及应用提供参考.  相似文献   

9.
Chemotaxis plays a crucial role in the realization of various functions of human life such as fertilization, immune function, inflammatory response, regeneration processes, etc. Inspired by the natural chemotaxis, colloidal motors with chemotactic ability can realize intelligent sense and targeted navigation, which bring a revolutionary method to biomedical applications like precision medicine. However, the application in the biomedical field requires the colloidal motors with submicrometer scale, strong chemotactic ability and clear chemotactic mechanism. In this Concept article, we introduce the recent progress of chemotactic colloidal motors, covering the fundamental theory behind experimental advancements. Particularly, the torque-driven reorientation motion of the submicrometer-sized colloidal motors during chemotaxis is discussed, and also their underlying mechanism is proposed. With the continuous research on chemotactic colloidal motors, it is believed that the emerging chemotactic colloidal motors will broaden practical applications in the biomedical field.  相似文献   

10.
The ability to induce and amplify motion at the molecular scale has seen tremendous progress ranging from simple molecular rotors to responsive materials. In the two decades since the discovery of light-driven rotary molecular motors, the development of these molecules has been extensive; moving from the realm of molecular chemistry to integration into dynamic molecular systems. They have been identified as actuators holding great potential to precisely control the dynamics of nanoscale devices, but integrating molecular motors effectively into evermore complex artificial molecular machinery is not trivial. Maximising efficiency without compromising function requires conscious and judicious selection of the structures used. In this perspective, we focus on the key aspects of motor design and discuss how to manipulate these properties without impeding motor integrity. Herein, we describe these principles in the context of molecular rotary motors featuring a central double bond axle and emphasise the strengths and weaknesses of each design, providing a comprehensive evaluation of all artificial light-driven rotary motor scaffolds currently present in the literature. Based on this discussion, we will explore the trajectory of research into the field of molecular motors in the coming years, including challenges to be addressed, potential applications, and future prospects.

Various families of light-driven rotary molecular motors and the key aspects of motor design are discussed. Comparisons are made between the strengths and weaknesses of each motor. Challenges, applications, and future prospects are explored.  相似文献   

11.
Recent developments in kinetically controlled supramolecular polymerization permit control of the size (i.e., length and area) of self-assembled nanostructures. However, control of molecular self-assembly at a level comparable with organic synthetic chemistry and the achievement of structural complexity at a hierarchy larger than the molecular level remain challenging. This study focuses on controlling the aspect ratio of supramolecular nanosheets. A systematic understanding of the relationship between the monomer structure and the self-assembly energy landscape has derived a new monomer capable of forming supramolecular nanosheets. With this monomer in hand, the aspect ratio of a supramolecular nanosheet is demonstrated that it can be controlled by modulating intermolecular interactions in two dimensions.  相似文献   

12.
Self-assembling peptides form a prominent class of supramolecular materials with in general good biocompatibility. To afford better control over the material properties, tremendous progress has been made in studying the supramolecular organization of the peptide assemblies. This knowledge has helped us to understand the correlation between the molecular structure of the peptide building blocks and the properties of the supramolecular products. However, peptide self-assembly consists of a complex pathway rather than a spontaneous thermodynamic process. This implies that the outcome of the self-assembly is critically governed by the assembly pathway. Here, we are going to discuss how peptide self-assembly can be modulated at the intermediate steps in the self-assembly pathway. The focus will be to demonstrate this engineering approach on the example of zero-dimensional/one-dimensional nanostructure selectivity over the β-sheet assembly pathway. In addition, we provide examples of biomedical applications of such steered peptide assemblies in the field of drug delivery and tissue engineering.  相似文献   

13.
超分子化学是当前化学领域的研究热点之一。基于环糊精和偶氮化合物的光控超分子可逆体系是近几年在超分子化学基础上发展起来的活跃领域。二者的复合物具有的优秀光学性质使其在光敏型自组装、催化、分子机器设计和智能材料领域受到极大的关注。本文综述了基于环糊精和偶氮化合物的光控超分子可逆体系的研究进展。介绍了该体系的研究背景、优势与原理; 根据该体系控制组装体的不同进行了分类总结,包括囊泡、凝胶、轮烷、催化体系、分子触手等; 最后结合现阶段的研究情况,对其前景与发展方向进行了展望。  相似文献   

14.
Molecular switches and motors are essential components of artificial molecular machines. In this perspective, we discuss progress in our design, synthesis, and functioning of photochemical and electrochemical switches and chemical and light-driven molecular motors. Special emphasis is given to the control of a range of functions and properties, including luminescence, self-assembly, motion, color, conductance, transport, and chirality. We will also discuss our efforts to control mechanical movement at the molecular level, a feature that is at the heart of molecular motors and machines. The anchoring of molecular motors on surfaces and molecular motors at work are discussed.  相似文献   

15.
16.
源于自然界中广泛存在的蛋白质自组装现象,近年来多肽的自组装逐渐成为材料学和生物医学等领域的研究热点.通过合理调控多肽的分子结构以及改变外界的环境,多肽分子可以利用氢键、疏水性作用、π-π堆积作用等非共价键力自发或触发地自组装形成形态与结构特异的组装体.由于多肽自身具有良好的生物相容性和可控的降解性能,利用多肽自组装技术构建的各种功能性材料在药物控制释放、组织工程支架材料以及生物矿化等领域内有着巨大的应用前景.本文总结了近年来多肽自组装研究的进展,介绍了多肽自组装技术常见的几种结构模型,概括了多肽自组装的机理,并进一步阐述多肽自组装形成的组装体形态及其在材料学和生物医学等领域里的应用.  相似文献   

17.
Synthetic macrocycles, a typical type of building block for molecular recognition and self-assembly, are crucial to supramolecular chemistry and materials science. Since 2008, a new generation of synthetic macrocyclic hosts, pillarenes and their abundant derivatives, which consist of hydroquinone units linked by methylene bridges at 2,5-positions, have been the focus of much research. Numerous studies on their host-guest properties and the fabrication of supramolecular assemblies have demonstrated that pillarenes and their derivatives possess many advantages that facilitate their applications in many research fields. Herein we summarize and classify the applications of pillarenes in terms of artificial transmembrane channels, controlled delivery systems, dispersion of carbon hybrid materials, extraction and absorption, liquid crystals, metal-organic frameworks, sensing and detection, stabilization of nanoparticles (Au/Ag/CdTe), and other typical biological applications. We also provide an overview of future developments in pillarene chemistry.  相似文献   

18.
Supramolecular chemistry in water is a constantly growing research area because noncovalent interactions in aqueous media are important for obtaining a better understanding and control of the major processes in nature. This Review offers an overview of recent advances in the area of water-soluble synthetic receptors as well as self-assembly and molecular recognition in water, through consideration of the functionalities that are used to increase the water solubility, as well as the supramolecular interactions and approaches used for effective recognition of a guest and self-assembly in water. The special features and applications of supramolecular entities in aqueous media are also described.  相似文献   

19.
Colloidal motors with multimode propulsion have attracted considerable attention because of enhanced transportability. It is a great challenge to fabricate colloidal motors powered by a single engine for multimode synergistic propulsion. Herein, we report on Janus versatile polymer nanoplatforms integrating various functionalities via tetrazole linkages for light-regulated multimode synergistic propulsion in the liquid. The presence of tetrazole linkages in the polymers endows the nanoparticles with various photoresponsive capabilities. A sole energy source (ultraviolet or visible light) simultaneously activates photocatalytic N2 release and photothermal conversion within the tetrazole-containing polymer phase at one side of asymmetric nanoparticles for converting light energy into photothermal/photocatalytic propulsion independent of the surrounding chemical medium. The photoactivated locomotion using tetrazoles as light-triggered fuels highly corresponds to light wavelengths, light powers and tetrazole contents. The tetrazole linkages capable of incorporating various functionalities to the polymer nanoparticles allow on-demand customizing of the colloidal motors, showing great potential in bio-applications.  相似文献   

20.
We review recent developments in the synthesis and self-assembly of Janus and multiblock colloidal particles, highlighting new opportunities for colloid science and technology that are enabled by encoding orientational order between particles as they self-assemble. Emphasizing the concepts of molecular colloids and colloid valence unique to such colloids, we describe their rational self-assembly into colloidal clusters, taking monodisperse tetrahedra as an example. We also introduce a simple method to lock clusters into permanent shapes. Extending this to 2D lattices, we also review recent progress in assembling new open colloidal networks including the kagome lattice. In each application, areas of opportunity are emphasized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号