首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of air thawing (AT), water immersion thawing (WT), microwave thawing (MT) and ultrasound combined with slightly acidic electrolyzed water thawing (UST) on the myofibrillar protein (MP) properties (surface hydrophobicity, solubility, turbidity, particle size and zeta potential), protein oxidation (carbonyl content and sulfhydryl content) and structure (primary, secondary and tertiary) of frozen mutton were investigated in comparison with fresh mutton (FM). The solubility and turbidity results showed that the MP properties were significantly improved in the UST treatment. UST treatment could effectively reduce the MP aggregation and enhance the stability, which was similar to the FM. In addition, UST treatment could effectively inhibit protein oxidation during thawing as well. The primary structure of MP was not damaged by the thawing methods. UST treatment could reduce the damage to MP secondary and tertiary structure during the thawing process compared to other thawing methods. Overall, the UST treatment had a positive influence in maintaining the MP properties by inhibiting protein oxidation and protecting protein structure.  相似文献   

2.
Effect of new thawing methods (ultrasound thawing (UT), vacuum thawing, (VT), microwave thawing (MT)) on gelling properties of myofibrillar protein (MP) from porcine longissimus dorsi was investigated, compared with traditional thawing methods (water immersion thawing, (WT)) and fresh meat (FM). The results showed that a decrease in MP gelling properties of all thawing samples was observed. The increase in roughness of MP gel from all thawing samples explained that the flatter, smoother, and denser surface morphology of that from FM samples was destroyed based on the observation by atomic force microscopy. There was significant difference (P < 0.05) in all gel indicators (particle size, turbidity, whiteness, water-holding capacity (WHC), moisture distribution, rheological characteristics, surface morphology) of MP from MT samples and there was insignificant difference (P > 0.05) in turbidity, whiteness, WHC of MP from VT samples compared with that from FM samples. There was insignificant difference (P > 0.05) in gel properties between UT and VT. The effect of UT and VT (new thawing methods) on MP gelling properties was significantly lower (P < 0.05) than that of WT (traditional thawing methods), and the effect of that from MT was obviously compared with other thawing methods.  相似文献   

3.
The aim of the study was to evaluate the positive effect of ultrasound-assisted saline thawing (UST) on the technological properties (water mobility, water holding capacity, colour, pH, shear force, TVB-N, oxidation reaction and microstructure) of mirror carp (Cyprinus carpio L.). The results present in the study showed that different thawing methods had negative impacts on the quality of mirror carp to varying degrees. Among them, UST samples had significant lower thawing loss, centrifugal loss and cooking loss than ultrasound thawing (UT) and air thawing (AT) samples (P < 0.05). The analysis result of low-field nuclear magnetic resonance illustrated that UST inhibited the mobility and distribution of water effectively. Decrease in shear force and TVBN values were observed in all thawing samples, and the UST samples maintained the significant better texture property and freshness than UT and AT samples did (P < 0.05). In addition, the treatment of UST obtained 1% salt concentration inhibited the oxidation reactions effectively. Investigation of the microstructure of samples demonstrated that the treatment of UST kept the relatively complete structure of tissue than other thawing methods. Therefore, UST can be an alternative strategy to the traditional thawing of meat.  相似文献   

4.
The effects of the different combined manner of ultrasound and covalent reaction between polyphenol and myofibrillar protein (MP) from chicken were studied. More so, antioxidant activities, digestive properties, and potential mechanism of ultrasound-assisted oxidation system of hydrophilic ((−)-Epicatechin gallate, ECG) and hydrophobic (Baicalein, BN) polyphenols was also analyzed in this study. Among all the combined treatments, surface hydrophobicity (SUH), active sulfhydryl contents (ASC), and specific surface area (SSA) of ultrasonic assisted ECG oxidation group (T6) was relatively apparent, indicating that a more unfolding MP structure was obtained. Furthermore, ultrasonic assisted ECG oxidation group showed the highest antioxidant activities compared with other combined treatments on the basis of the results of DPPH free radical scavenging activities, metal ion chelating activities, and hydroxyl radicals (OH·) scavenging activities. The results of simulated digestion system and kinetic analysis also verified that ultrasonic assisted ECG oxidation had higher MP bio-accessibility than the control group. In contrast, a lower digestibility was displayed in ultrasonic assisted BN oxidation group. In summary, the ultrasound-assisted covalent reaction of MP and ECG might be a desirable approach for industrial production of MP from chicken with better antioxidant activities and digestive properties.  相似文献   

5.
Vacuum freeze-drying is a new and high technology on agricultural product dehydrating dry, but it faces the high cost problem caused by high energy consumption. This study investigated the effect of ultrasound (US), freeze-thawing (including the freeze-air thawing (AT), freeze-water thawing (WT), freeze-ultrasound thawing (UST), and freeze-air ultrasound thawing (AT + US)) pretreatments on the vacuum freeze-drying efficiency and the quality of dried okra. The results indicated that the application of ultrasound and different freeze-thawing pretreatments reduced the drying time by 25.0%–62.50% and the total energy consumption was 24.28%–62.35% less. The AT pretreatment reduced the time by of okra slices by 62.50% and the total energy consumption was 62.35% less. The significant decrease in drying time was due to a change in the microstructure caused by pretreatment. Besides, the okra pretreated with the US retained most of the quality characteristics (flavor, color, hardness, and frangibility) among all methods, while, AT + US had the most changeable characteristics in quality, which is deprecated in our study. The okra pretreated with the US and AT, separately, had the best dry matter content loss (9.008%, 5.602%), lower chlorophyll degradation (5.05%, 5.44% less), and higher contents of total phenolics, total flavonoids, and pectin, with strong antioxidant capacity, compared to other methods. The pretreatments did not have a large effect on the functional groups and the structure of pectin, but slightly affected the viscosity. It can be concluded that AT and US pretreatment methods are better than others.  相似文献   

6.
The effects of mono-, dual- and tri-frequency ultrasound-assisted thawing (UAT) on the physicochemical quality, water-holding capacity, moisture migration and distribution and myofibrillary structure of frozen large yellow croaker (Larimichthys crocea) were detected. The results indicated that multifrequency UAT treatment significantly increased the thawing rate, maintained the stability of myofibrils and reduced the lipid oxidation. The multifrequency UAT samples had better water-holding capacity (higher water-holding capacity values, lower thawing loss and cooking loss) and physicochemical quality (higher hardness, springiness, resilience, chewiness and lower total volatile basic nitrogen (TVB-N) values, thiobarbituric acid reactive substances (TBARS) values), higher immobilized water content, and lower free water content. Therefore, the results provide a further understanding of the quality stability of frozen large yellow croaker treated by the multifrequency UAT.  相似文献   

7.
The effects of air freezing (AF), immersion freezing (IF) and ultrasound-assisted immersion freezing (UF) at different power levels (125, 165, 205 and 245 W) on the structure and gel properties of the myofibrillar protein (MP) of chicken breast were investigated. UF at 165 W (UF-165) had no obvious negative impact on the primary structure of the MP and effectively reduced the change in the secondary and tertiary structure. In addition, UF-165 significantly reduced the losses in the elastic modulus (G′), gel strength, and gel water holding capacity (P < 0.05). According to low field nuclear magnetic resonance analysis, the T21 and T22 of the UF-165 MP gels were shorter than those of the AF and IF samples, which meant that the UF-165 reduced the mobility of the immobilized water and free water in MP gel. A scanning electron microscopy analysis showed that the appropriate ultrasonic power promoted the formation of a compact and homogeneous protein gel network. These results suggested that the appropriate ultrasonic power maintained the MP structure and reduced the loss of gel quality.  相似文献   

8.
A novel protein extraction method of ultrasound-assisted basic electrolyzed water (BEW) was proposed, and its effects on the structural and functional properties of Antarctic krill proteins were investigated. Results showed that BEW reduced 30.9% (w/w) NaOH consumption for the extraction of krill proteins, and its negative redox potential (−800 ~ −900 mV) protected the active groups (carbonyl, free sulfhydryl, etc.) of the proteins from oxidation compared to deionized water (DW). Moreover, the ultrasound-assisted BEW increased the extraction yield (9.4%), improved the solubility (8.5%), reduced the particle size (57 nm), favored the transition of α-helix and β-turn to β-sheet, promoted the surface hydrophobicity and disulfide bonds formation of krill proteins when compared to BEW without ultrasound. These changes contributed to the enhanced foam capacity, foam stability and emulsifying capacity of the krill proteins. Notably, all the physicochemical, structural and functional properties of the krill proteins were comparable to those extracted by the traditional ultrasound-assisted DW. This study suggests that the ultrasound-assisted BEW can be a potential candidate to extract proteins, especially offering an alternative way to produce marine proteins with high nutritional quality.  相似文献   

9.
The aim of this study was to evaluate the changes of ultrasound-assisted thawing on lamb meat quality and differential metabolite profiles during refrigerated storage. Compared with flow water thawing (FW), pH, a*, C*, and sulfhydryl content of lamb were significantly increased, while L*, drip loss and cooking loss were significantly decreased after ultrasound-assisted thawing (UT). On day 1 (UT1 and FW1) and day 7 (UT7 and FW7) in the UT and FW groups, principal component analysis explained 42.22% and 39.25% of the total variance. In this study, 44 (UT1 and FW1) and 47 (UT7 and FW7) differentially expressed metabolites were identified, including amino acids, carbohydrates and their conjugates, nucleic acids, carbonyl compounds and others. The results of this study provide data to clarify the differences between UT and FW, and lay a foundation for the application of ultrasound-assisted thawing in the meat industry.  相似文献   

10.
The present work investigated the effects of water bath heating coupled with different ultrasound treatments on the gel properties, protein conformation, microstructures and chemical interactions of silver carp surimi at low/high salt levels. Results showed that the gel strength, hardness, springiness and water holding capacity (WHC) of surimi gels at low salt concentration were inferior to those at high salt content, regardless of the treatments. Compared with the traditional water bath heating, ultrasonic-assisted treatments significantly improved the gelation properties of surimi at the same salt level. In fact, ultrasound treatment also facilitated the unfolding of α-helix structure of the protein, with the resulting exposure of internal groups further enhancing hydrophobic interactions and hydrogen bonds between protein molecules, thereby leading to the formation of denser microstructures with smaller holes. Furthermore, the most noteworthy ultrasonic treatment group was ultrasound-assisted preheating (U + W) group, whose gelation performance under low salt condition, was comparable with that of the traditional two-stage heating (W + W) group with high salt content. Overall, ultrasound-assisted water bath preheating proved to be a feasible approach to improve the gel properties and microstructures of low-salt surimi gels.  相似文献   

11.
Genipin is a natural crosslinker that improves the functional properties of proteins by modifying its structures. This study aimed to investigate the effects of sonication on the emulsifying properties of different genipin concentration-induced myofibrillar protein (MP) cross-linking. The structural characteristics, solubility, emulsifying properties, and rheological properties of genipin-induced MP crosslinking without sonication (Native), sonication before crosslinking (UMP), and sonication after crosslinking (MPU) treatments were determined, and the interaction between genipin and MP were estimated by molecular docking. The results demonstrated that hydrogen bond might be the main forces for genipin binding to the MP, and 0.5 μM/mg genipin was a desirable concentration for protein cross-linking to improve MP emulsion stability. Ultrasound treatment before and after crosslinking were better than Native treatment to improve the emulsifying stability index (ESI) of MP. Among the three treatment groups at the 0.5 μM/mg genipin treatment, the MPU treatment group showed the smallest size, most uniform protein particle distribution, and the highest ESI (59.89%). Additionally, the highest α-helix (41.96%) in the MPU + G5 group may be conducive to the formation of a stable and multilayer oil–water interface. Furthermore, the free groups, solubility, and protein exposure extent of the MPU groups were higher than those of UMP and Native groups. Therefore, this work suggests that the treatment of cross-linking followed by ultrasound (MPU) could be a desirable approach for improving the emulsifying stability of MP.  相似文献   

12.
Effects of the incorporation of ultrasound with varied intensities (0–800 W) into the thermal-induced gelation process on the gelling properties of myofibrillar protein (MP) were explored. In comparison with single heating, ultrasound-assisted heating (<600 W) led to significant increases in gel strength (up to 17.9%) and water holding capacity (up to 32.7%). Moreover, moderate ultrasound treatment was conducive to the fabrication of compact and homogenous gel networks with small pores, which could effectively impair the fluidity of water and allow redundant water to be entrapped within the gel network. Electrophoresis revealed that the incorporation of ultrasound into the gelation process facilitated more proteins to get involved in the development of gel network. With the intensified ultrasound power, α-helix in the gels lowered pronouncedly with a simultaneous increment of β-sheet, β-turn, and random coil. Furthermore, hydrophobic interactions and disulfide bonds were reinforced by the ultrasound treatment, which was in support of the construction of preeminent MP gels.  相似文献   

13.
In this study, we investigated the effect of the ultrasound-assisted Maillard reaction on the structural and emulsifying properties of myofibrillar protein (MP) and dextran (DX) conjugates with different molecular weights (40, 70 and 150 kDa). Compared with classical heating, mild and moderate ultrasound-assisted methods (100–200 W) could accelerate the later stage of the Maillard reaction, which increased the degree of graft (DG) and the content of advanced Maillard reaction products (MPRs). Structural analysis revealed conjugates obtained by Maillard reaction induced the loss of ordered secondary structures (α-helix, β-sheets) and red-shift of maximum emission wavelength of intrinsic fluorescence spectrum. The conjugate containing 40 kDa DX exhibited higher extent of Maillard reaction compared to those containing 70 kDa and 150 kDa DX under various treating methods. Moreover, the ultrasound-assisted Maillard reaction could effectively improve the emulsifying behaviors. 100 W ultrasound-induced conjugates grafted by 70 kDa DX produced the smallest emulsion size with optimum storage stability. Confocal laser scanning microscopy and analytical centrifugal analyzer further confirmed MP grafted by 70 kDa DX with the assistance of 100 W ultrasound field could produce the smallest and most homogeneous MP-base emulsion with no flocculation. Our study demonstrated that mild ultrasound treatment resulted in well-controlled Maillard reaction, and the related glycoconjugate grafted with 70 kDa DX showed the greatest improvements in emulsifying ability and stability. These findings provided a theoretical foundation for the development of emulsion-based foods with excellent characteristics.  相似文献   

14.
The influence of multi-frequency combined ultrasound thawing on primary, secondary, and tertiary structures, electrophoresis pattern, particle size distribution, zeta potential values, thermal stability, rheological behavior, and microstructure of small yellow croaker myofibrillar proteins (MPs) were studied. Four treatments were used for thawing small yellow croakers: flow water thawing (FWT), mono-frequency ultrasonic thawing (MUT), dual-frequency ultrasonic thawing (DUT), and tri-frequency ultrasonic thawing (TUT). Compared with fresh samples (FS), the MPs of the sample pretreated by DUT had non-significant effect on protein primary (including free amino groups and surface hydrophobicity), secondary, tertiary structures, electrophoresis pattern, and microstructure. MPs pretreated by DUT had less aggregation and degradation. Besides, DUT treatment increased the thermal stability of MPs. The ultrasound had significant effects on the rheological properties of MPs. Overall, DUT effectively minimized the changes in MPs structure and protected the protein thermal stability and rheological behavior during the thawing process.  相似文献   

15.
This research evaluated the effects of multi-frequency ultrasound assisted freezing (UAF) on the freezing rate, structural characteristics, and quality properties of cultured large yellow croaker. The freezing effects with triple ultrasound-assisted freezing (TUF) at 20, 28 and 40 kHz under 175 W was more obvious than that of single ultrasound-assisted freezing (SUF) at 20 kHz and dual ultrasound-assisted freezing (DUF) at 20 and 28 kHz. The results showed that UAF significantly increased the freezing rate and better preserved the quality of frozen large yellow croaker samples. Specifically, the quality parameters of the TUF-treated samples were closer to those of the fresh samples, with greater texture characteristics, a larger water holding capacity (lower thawing loss and cooking loss), lower K values and lower thiobarbituric acid reactive substances values. Light microscopy observation images revealed that the ice crystals formed by TUF were fine and evenly distributed, resulting in less damage to the frozen large yellow croaker samples. Therefore, multi-frequency UAF could improve the quality properties of the large yellow croaker samples.  相似文献   

16.
To improve the quality of cooked and frozen crayfish after repeated freeze–thaw cycles, the effects of alginate oligosaccharide (1 %, w/v) with ultrasound-assisted (40 W, 3 min) soaking (AUS) on the physicochemical properties were investigated. The AUS samples improved water-holding capacity with 19.47 % higher than the untreated samples. Low-field nuclear magnetic resonance confirmed that mobile water (T22) in the samples after 5 times of freeze–thaw cycles was reduced by 13.02 % and 29.34 % with AUS and without treatment, correspondingly; and with AUS and without treatment, average size of the ice crystals was around 90.26 μm2 and 113.73 μm2, and average diameter of the ice crystals was 5.83 μm and 8.14 μm, respectively; furthermore, it enhanced the solubility and zeta potential, lowered the surface hydrophobicity, reduced the particle size, and maintained the secondary and tertiary structures of myofibrillar protein (MP) after repeated freeze-thawing. Gel electrophoresis revealed that the AUS treatment mitigated the denaturation of MPs. Scanning electron microscopy revealed that the AUS treatment preserved the structure of the tissue. These findings demonstrated that the AUS treatment could enhance the water retention and physicochemical properties of protein within aquatic meat products during temperature fluctuations..  相似文献   

17.
In this paper we have used the Wavelet Transform (WT) and the Detrended Fluctuation Analysis (DFA) methods to analyze hand tremor movements in essential tremor (ET), in two different recording conditions (before and after the addition of wrist-cuff load). We have analyzed the time series comprised of peak-to-peak (PtP) intervals, extracted from regions around the first three main frequency components of the power spectra (PwS) of the recorded tremors, in order to substantiate results related to the effects of load on ET, to distinguish between multiple sources of ET, and to separate the influence of peripheral factors on ET.Our results show that, in ET, the dynamical characteristics, that is, values of respective scaling exponents, of the main frequency component of recorded tremors change after the addition of load. Our results also show that in all the observed cases the scaling behavior of the calculated functions changes as well—the calculated WT scalegrams and DFA functions display a shift in the position of the crossover when the load is added. We conclude that the difference in behavior of the WT and DFA functions between different conditions in ET could be associated with the expected pathology in ET, or with some additional mechanism that controls movements in ET patients, and causes the observed changes in scaling behavior.  相似文献   

18.
Qingke protein rich in restricted amino acids such as lysine, while the uncoordination of ratio of glutenin and gliadin in Qingke protein has a negative impact on its processing properties. In this study, the effect of multiple-frequency ultrasound combined with transglutaminase treatment on the functional and structural properties of Qingke protein and its application in noodle manufacture were investigated. The results showed that compared with the control, ultrasound-assisted transglutaminase dual modification significantly increased the water and oil holding capacity, apparent viscosity, foaming ability, and emulsifying activity index of Qingke protein, which exhibited a higher storage modulus G' (P < 0.05). Meanwhile, ultrasound combined with transglutaminase treatment enhanced the cross-linking degree of Qingke protein (P < 0.05), as shown by decreased free amino group and free sulfhydryl group contents, and increased disulfide bond content. Moreover, after the ultrasound-assisted transglutaminase dual modification treatment, the fluorescence intensity, the contents of α-helix and random coil in the secondary structure of Qingke protein significantly decreased, while the β-sheet content increased (P < 0.05) compared with control. SDS-PAGE results showed that the bands of Qingke protein treated by ultrasound combined with transglutaminase became unclear. Furthermore, the quality of Qingke noodles made with Qingke powder (140 g/kg dual modified Qingke protein mixed with 860 g/kg extracted Qingke starch) and wheat gluten 60–70 g/kg was similar to that of wheat noodles. In summary, multiple-frequency ultrasound combined with transglutaminase dual modification can significantly improve the physicochemical properties of Qingke protein and the modified Qingke proteins can be used as novel ingredients for Qingke noodles.  相似文献   

19.
Solid foods include fish, shrimp, shellfish, and other aquatic products, fruits, and vegetables. These products are commonly used for food freezing, cooling, and thawing. However, traditional freezing, cooling, and thawing of solid food technologies have limitations in quality, such as protein denaturation and water loss in food. Ultrasound-assisted technology has become a useful method in solid food processing due to improved preservation quality of solid food. This paper comprehensively reviews the mechanism and application of ultrasonic in solid food processing technology. Although the application of ultrasound-assisted ultrasound in solid food processing is relatively comprehensive, the energy saving of food cold processing is essential for practical application. This paper analyzes the optimization of ultrasonic in solid food processing, including orthogonal/multi-frequency technology and the combination of ultrasonic and other technologies, which provides new ideas for freezing, cooling, and thawing of solid food processing.  相似文献   

20.
The objective of this study was to evaluate the effects of single ultrasound (360 W, 20 min), single microwave (10 W/g, 120 s) and ultrasonic–microwave combination treatment on shrimp surimi gel properties. The structure and physicochemical properties of myofibrillar protein (MP) were also determined. Low-field nuclear magnetic resonance showed that the fluidity of water molecules and the moisture content decreased, the stability and water holding capacity (WHC) increased after single ultrasound, single microwave and ultrasonic–microwave combination treatment. Compared with the traditional water bath treatment, ultrasound and microwave treatment reduced the total sulfhydryl content and promoted the formation of intermolecular disulfide bonds and hydrophobic interactions, which improved the compactness of the network structure of shrimp surimi gel. Moreover, Fourier transform infrared spectroscopy and sodium dodecyl sulfate–polyacrylamide gel electrophoresis analysis revealed that these treatments not only inhibited the degradation of MP, but also decreased the α-helix content and increased the β-sheet content. The three treatments also significantly reduced the particle size and decreased the solubility of MP. Overall, the effect of ultrasonic–microwave combination treatment was superior to that of either single treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号