首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrasonic-assisted extraction (UAE) coupled with deep eutectic solvent (DES) is a novel, efficient and green extraction method for phytochemicals. In this study, the effects of 16 DESs coupled with UAE on the extraction rate of polyphenols from Paederia scandens (Lour.) Merr. (P. scandens), an edible and medicinal herb, were investigated. DES synthesised with choline chloride and ethylene glycol at a 1:2 M ratio resulted in the highest extractability. Moreover, the effects of extraction parameters were investigated by using a two-level factorial experiment followed by response surface methodology The optimal parameters (water content in DES of 49.2%, the actual ultrasonic power of 72.4 W, and ultrasonic time of 9.7 min) resulted in the optimal total flavonoid content (TFC) (27.04 mg CE/g DW), ferric-reducing antioxidant power (FRAP) value (373.27 μmol Fe(Ⅱ)E/g DW) and 2,2′-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid radical (ABTS+) value (48.64 μmol TE/g DW), closely matching the experimental results. Furthermore, a comparison study demonstrated that DES-UAE afforded the higher TFC and FRAP value than traditional extraction methods. 36 individual polyphenolic compounds were identified and quantified by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in P. scandens extracts, and of which 30 were found in the extracts obtained by DES-UAE. Additionally, DES-UAE afforded the highest sum of individual polyphenolic compound content. These results revealed that DES-UAE enhanced the extraction efficiency for polyphenols and provided a scientific basis for further processing and utilization of P. scandens.  相似文献   

2.
A time-saving, efficient, and environmentally friendly ultrasonic-microwave-assisted natural deep eutectic solvent (UMAE-NADES) extraction method was developed for the extraction of anthocyanins from Aronia melanocarpa. Eight different natural eutectic solvents were screened initially, and choline chloride-glycerol was selected as the extraction solvent. The extraction conditions were optimized using the response surface methodology, and the extraction rate of anthocyanins was higher than those achieved using the traditional ethanol method, natural deep eutectic solvent extraction method, and ultrasonic-microwave-assisted ethanol method. Six anthocyanins, including cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin-3-O-arabinoside, cyanidin-3-O-xyloside, cyanidin-3,5-O-dihexoside, and the dimer of cyanidin-hexoside were identified and extracted at a purity of 448.873 mg/g using high performance liquid chromatography-mass spectrometry (HPLC-MS). The compounds extracted using UMAE-NADES had higher antioxidant capacities than those extracted by the other three methods. The UMAE-NADES demonstrated significant efficiency toward the extraction of bioactive substances and has potential utility in the food and pharmaceutical industries.  相似文献   

3.
Ultrasound-assisted extraction is widely recognized as an eco-friendly technique due to low solvent consumption and time extraction as well as enhanced extraction efficiency with respect to conventional methods. Nevertheless, it would be convenient to avoid the usually used organic solvents to reduce the environment pollution. In this regard, Deep Eutectic Solvents (DES) represent nowadays a green and sustainable alternative for the extraction of bioactive compounds from natural sources. In this study, an efficient extraction of stevioside and rebaudioside A from Stevia rebaudiana coupling ultrasound with DES was developed. A solvent screening was performed using the predictive approach COnductor-like Screening MOdel for Real Solvent (COSMO-RS). The effect of three independent variables, namely % of water, temperature, and sonication amplitude, were investigated by the response surface methodology (RSM). Comparing ultrasound-assisted extraction (UAE) with conventional extraction, it has been demonstrated that the amount of steviol glycosides through UAE is almost three times higher than that obtained by the conventional method. Possible physicochemical factors involved in the UAE mechanism were discussed.  相似文献   

4.
Extracts from medicinal plants are generally obtained by conventional methods like percolation and maceration. Owing to limitations of traditional methods and to meet the rising demand of extracts, the development of new green approaches is need of hour. In the present research, we have developed an ultrasound-assisted extraction (UAE) method for the Nardostachys jatamansi (NJ) D. Don, DC roots and optimized the extraction parameters for possible improved extract yield. A multivariate optimization strategy using the Centre Composite Design coupled with response surface methodology was applied. A numerical optimization approach accurately predicted the extraction conditions (sonication time ∼ 20 min, ethanol ∼ 70 % and a liquid/solid ratio of about 21:1). Scanning electron microscopy of the plant samples after UAE also indicated the cavitation effect due to sound waves. GC–MS analysis of the optimized ultrasound extract (OUNJ) confirmed improvement in the concentration of various secondary metabolites like jatamansone (91.8 % increase), spirojatamol (42.3 % increase), globulol (130.4 % increase), sitosterol (84.6 % increase) as compared to the soxhlet extract (SXNJ). Different anti-oxidant parameters (DPPH, Glutathione, Catalase SOD and NO) were also significantly altered (p < 0.05) in the optimized extracts. The IC50 to inhibit acetylcholinesterase activity (AChE) in vitro and its concentration in brain homogenates were significantly (p < 0.05) improved by OUNJ extract as compared to the SXNJ ones. To conclude, we can say that established optimized conditions for UAE of N. jatamansi roots not only reduce the extraction time but also improved the pharmacological potential of the extracts.  相似文献   

5.
This study aimed was to examine the potential of several green extraction methods to extract cosmetic/cosmeceutical components from Macadamia integrifolia pericarps, which were a by-product of the macadamia nut industry. M. integrifolia pericarps were extracted by conventional solvent extraction process using 95% v/v ethanol and various green extraction methods, including infusion, ultrasound, micellar, microwave, and pulsed electric field extraction using water as a clean and green solvent. The extracts were evaluated for total phenolic content using Folin-Ciocalteu method. The antioxidant activities were evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing/antioxidant power, and ferric-thiocyanate method. The anti-skin ageing activities were investigated by means of collagenase, elastase, and hyaluronidase inhibition using enzyme-substrate reaction assay. The irritation profile of the extracts was evaluated by the hen’s egg test-chorioallantoic membrane (HET-CAM) test. The results noted that ultrasound-assisted extraction yielded the significantly highest extract amount with the significantly highest total phenolic content (p < 0.05), especially when the extraction time was 10 min. The aqueous extract from ultrasound-assisted extraction possessed the most potent antioxidant and anti-skin ageing activities (p < 0.05). Its antioxidant activities were comparable to ascorbic acid and Trolox, whereas the anti-skin ageing activities were equivalent to epigallocatechin-3-gallate and oleanolic acid. Besides, the extract was safe since it induced no irritation in the HET-CAM test. Therefore, ultrasound-assisted extraction was suggested as an environmentally friendly extraction method for M. integrifolia pericarp extraction and further application in the cosmetic/cosmeceutical industries.  相似文献   

6.
Ginger (Zingiber officinale) and Licorice (Glycyrrhiza glabra L.) are one of the most popular spices having a wide range of bioactive compounds that have varied biological and pharmacological properties. The study was aimed to extract polyphenols from Himalayan medicinal herbs ginger and licorice in different solvents using ultra-sonication technique. The extraction efficiency (EE) was determined, and the extracts were characterized for physical properties (particle size, colour values), total phenolics, flavonoids, antioxidant properties, and structural and morphological features. Ultra-sonicated ginger in aqueous phase had the highest EE of polyphenols (15.27%) as compared to other solvents. Similar trend was observed in licorice with EE of 30.52 % in aqueous phase followed by ethanol: water (50: 50), and methanol: water (50:50) with 28.52% and 26.39%, respectively. The preliminary screening showed the presence of tannins, phenolics, flavonoids, saponins and carbohydrates, steroids and alkaloids in all the extracts. The phenolic and flavonoid content of dried ginger was found higher in ethanolic extracts compared to fresh ones as revealed by HPLC. Similarly, for licorice, the ethanolic fractions had the highest polyphenolic content. The representative samples of ginger (ethanol: water 75:25 and ethylacetate: water 75:25) and licorice (ethanol: water 70:30 and methanol: water 50:50) were studied for FESEM and particle size. The results showed the agglomerated extract micro-particles with a diameter of 0.5–10 µm and increased particle size (ginger: 547 and 766 nm), and (licorice: 450 and 566 nm). The findings could be beneficial for the advancement of ginger and licorice processing, for the comprehension of these herbs as a source of natural antioxidants in different food formulations.  相似文献   

7.
The influence of several experimental parameters on the ultrasonic extraction of Hibiscus tiliaceus L. flowers were investigated: extraction time, solvent polarity, sample amount, solvent volume and sample particle size. It was concluded that the most influential variables were extraction time and solvent polarity. The optimized procedure employed 5 g of ground flowers, 150 mL of methanol and 140 min of extraction. The extracts were fractionated using preparative silica columns and the resulting fractions were analyzed by GC/MS. Some saturated hydrocarbons, fatty acids, fatty acid methyl esters, phytosterols, and vitamin E were identified in the plant extracts.  相似文献   

8.
Natural deep eutectic solvent (NaDES) is widely applied in the extraction of nutrients from natural resources as a greener alternative for fossil solvent. In the present work, 27 different NaDESs were screened for the extraction of paeoniflorin (PF) and galloyl paeoniflorin (GPF) from Radix Paeoniae Rubra (RPR). After screening and extraction parameter optimization, the extraction yields of PF and GPF reached up to 182.8 mg/g and 77.4 mg/g with the selected NaDES, ChCl-Sor. Furthermore, the antioxidant activity in vitro and neuroprotectivity in vivo of the ‘ready-to-use’ extracts were evaluated comprehensively. Especially in vivo, the cerebral ischemic/ reperfusion injury model was established in rats and the protective effects of the RPR extracts were determined. The results not only proved that NaDES is a valuable green extraction media, but also indicated the safety and potential pharmaceutical application of NaDES based ‘ready-to-use’ extracts from medical plants.  相似文献   

9.
The objective of this work is to discuss the main parameters that influence the sonication extraction of Ilex paraguariensis leaves. For this purpose, the extraction time, solvent polarity, solvent volume, sample mass and particle size were evaluated. Results showed that the main variable affecting the extraction process was the solvent polarity. Though in a less extent, temperature and extraction time also demonstrated to be important parameters, while the other variables did not present a significant influence on the extraction yield. The extracts at the optimized condition were compared with those obtained by maceration, in terms of mass yield and chemical composition. The major compounds identified in the extracts were caffeine and palmitic acid. Some saturated hydrocarbons such as fatty acids, fatty acid methyl esters, phytosterols, and theobromine were also identified in the fractions.  相似文献   

10.
Ultrasonically assisted acid extraction of manganese from slag   总被引:5,自引:0,他引:5  
An ultrasonically assisted extraction (UAE) technique was developed for the extraction of manganese from electrolytic manganese slag using a sulfuric acid-hydrochloric acid mixture (4:0.3, v/v) as solvent. The UAE conditions were optimized and the significance of variables affecting UAE tested. The determination of manganese was carried out by atomic absorption spectrophotometry (AAS). The ultrasonic extraction efficiency of manganese can reach about 90% under the following optimum conditions: solvent-slag ratio: 4 mL/g; temperature: 333 K; particle size: 0.2 mm; extraction time: 35 min; amount of additive (citric acid): 8 mg/g slag. During the UAE process, the particle size parameter on the extraction was the most significant, followed by solvent-slag ratio, citric acid mass, time and temperature. The repeatability of UAE technique was satisfactory. The ultrasonic method shown to be a much superior approach to the conventional extraction method in the extraction of manganese from slag.  相似文献   

11.
An ultrasonication-assisted synthesis of alcohol-based deep eutectic solvents (DESs) is described. Several DESs were synthesized simultaneously under the same conditions. The prepared DESs were used for the extraction of gingerols from ginger powder via ultrasonication-assisted extraction. Notably, some of the prepared DESs exhibited superior extraction performance than those in traditional organic solvents. The viscosity of the DESs, which was suggested to be typically lower than 100 mPa*s had a critical effect on extraction performance. However, the higher gingerol contents in the extracts did not translate to higher active antioxidant abilities. The extraction temperature was found to be a key determinant of the antioxidant capability of the extracted gingerols while the use of higher temperatures (>50 °C) induced degradation and loss of phenolic compounds during extraction. Response surface methodology was applied for determining the optimal extraction conditions to achieve maximum antioxidant capacity with suitable gingerol content. All compounds used for the preparation of the DESs in this study have been widely employed in cosmetic and pharmaceutical fields. Therefore, the extracts in these DES solutions can be considered for direct application development without further product isolation.  相似文献   

12.
Several plants that are rich in polyphenolic compounds and exhibit biological properties are grown in the desert region of Mexico under extreme climate conditions. These compounds have been recovered by classic methodologies in these plants using organic solvents. However, little information is available regarding the use of alternative extraction technologies, such as ultrasound. In this paper, ultrasound-assisted extraction (UAE) parameters, such as the liquid:solid ratio, solvent concentration and extraction time, were studied using response surface methodology (RSM) for the extraction of polyphenols from desert plants including Jatropha dioica, Flourensia cernua, Turnera diffusa and Eucalyptus camaldulensis. Key process variables (i.e., liquid:solid ratio and ethanol concentration) exert the greatest influence on the extraction of all of the phenolic compounds (TPC) in the studied plants. The best conditions for the extraction of TPC involved an extraction time of 40 min, an ethanol concentration of 35% and a liquid:solid ratio ranging from 8 to 12 ml g−1 depending on the plant. The highest antioxidant activity was obtained in the E. camaldulensis extracts. The results indicated the ability of UAE to obtain polyphenolic antioxidant preparations from desert plants.  相似文献   

13.
Phenolic compounds, obtained from plants are important in the food, biomaterial and pharmaceutical industries; however current extraction methods, such as Soxhlet (solid-liquid) extraction, liquid-liquid extraction, microwave-assisted extraction, and ultrasonic extraction (USE), have the disadvantages of large processing times, contamination by solvents, and degradation of analytes. This study demonstrates that shock wave-assisted extraction can be used as a more efficient, eco-friendly and rapid method. Extraction of powdered samples of Eysenhardtia polystachia heartwood, a plant with high concentration of phenolic compounds, exposed to different doses of underwater shock waves, was compared with the conventional methods. Our results revealed that shock wave-assisted extraction (1500 shock waves with a peak positive pressure of approximately 88 MPa) produced 34.54% and 31.95% higher contents than Soxhlet and USE, respectively. Extraction times using shock waves were much shorter than with all other methods tested, proving that it is an attractive method to obtain both phenolic acids and flavonoids without the need for organic solvents. Furthermore, shock waves produced a significantly higher content of total reducing sugars than Soxhlet extraction and less phenolic acids which gives the insight of a more selective extraction of components.  相似文献   

14.
The kinetics of ultrasonic extraction of extractive substances (ES) from dry herbs of garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage using petroleum ether, 70% ethanol or water at 40 degrees C, as well as the composition of dry extracts, were studied. The mechanism of ultrasonic extraction is confirmed to occur in two steps: first, dissolution of the ES near the particle surface (washing) and, second, diffusion from the solid particles to the bulk of the liquid extract (slow extraction). The process is described mathematically using three concepts of the unsteady diffusion through plant material, the film theory and the empirical equation of Ponomaryov. The yield of ES increases with increasing solvent polarity, and nearly the maximum concentration of ES in liquid extracts is achieved for about 20 min. The composition of extracts depends on both the extraction conditions applied and the plant material.  相似文献   

15.
Anthocyanins (Acys) are naturally occurring compounds that impart color to fruit, vegetables and plants. The extraction of Acys from red raspberry (Rubus idaeus L. var. Heritage) by ultrasound-assisted process (UAP) was studied. A central composite rotate design (CCRD) was used to obtain the optimal conditions of ultrasound-assisted extraction (UAE), and the effects of operating conditions, such as the ratio of solvents to materials, ultrasonic power and extraction time, on the extraction yield of Acys were studied through response surface methodology (RSM). The optimized conditions of UAE were as follows: ratio of solvents to materials was 4:1 (ml/g), extraction time was 200 s, and ultrasonic power was 400 W. Under these conditions 34.5 mg of Acys from 100 g of fresh fruits (TAcy, expressed as cyanidin-3-glucoside), approximately 78.13% of the total red pigments, could be obtained by UAE. The Acys compositions of extracts were identified by high-performance liquid chromatography–mass spectrometry (HPLC–MS), 12 kinds of Acys had been detected and eight kinds of Acys were characterized. Result indicated that cyanidin-3-sophoroside, cyanidin-3-(2G-glucosylrutinoside), cyanidin-3-sambubioside, cyanidin-3-rutinoside, cyanidin-3-xylosylrutinoside, cyanidin-3-(2G-glucosylrutinoside), and cyanidin-3-rutinoside were main components in extracts. In addition, in comparison with the conventional solvent extraction, UAE is more efficient and rapid to extract Acys from red raspberry, due to the strong disruption of fruit tissue structure under ultrasonic acoustic cavitation, which had been observed with the scanning electron microscopy (SEM). However, the Acys compositions in extracts by both methods were similar, which were investigated using HPLC profile.  相似文献   

16.
Ma Y  Ye X  Hao Y  Xu G  Xu G  Liu D 《Ultrasonics sonochemistry》2008,15(3):227-232
Hesperidin, an abundant and inexpensive bioflavonoid in Penggan (Citrus reticulata) peel, has been reported to possess a wide range of pharmacological properties. Ultrasonic extraction is an effective technique for the isolation of bioactive compounds from vegetable materials. In this study, the application of ultrasonic method was shown to be more efficient in extracting hesperidin from Penggan (C. reticulata) peel than the classical method. The effects of main ultrasonic-assisted extraction conditions on extraction yields of hesperidin from Penggan (C. reticulata) peel were evaluated, including extraction solvents, solvent volume, temperature, extraction time, ultrasonic power, ultrasonic frequency. Results showed that solvent, frequency and processing temperature were the most important factors for improving the extracting yields of hesperidin. When performed at the same temperature under the same time using three frequencies, methanol as the solvent improved the extraction yield evidently compared with ethanol or isopropanol; by comparison of the frequency influence, the yield of hesperidin was higher at 60 kHz than at 20 kHz and 100 kHz. The optimum ultrasonic conditions were determined as: methanol, frequency of 60 kHz, extraction time of 60 min, and temperature of 40 degrees C. In addition, the ultrasonic power had a weak effect on the yields of hesperidin within the experimental range. Extending ultrasonic treatment times did not result in degradation of hesperidin; the rotary beaker for materials can increase the yields of hesperidin.  相似文献   

17.
Betulin is an abundant naturally occurring triterpene, which makes it a potentially important raw material for a precursor of biologically active compounds. The objective of the current study was to determine the optimum UAE conditions for betulin from B. papyfera bark. The optimum conditions were evaluated with fractional factorial design and optimized using response surface methodology. High yields of betulin were observed from white birch bark by UAE technology. The solvent concentration and the ratio of material to solvent were the most significant parameters on betulin extraction as evaluated through FFD. The extraction conditions were further investigated with central composite design. The fitted second-order model revealed that the optimal conditions consisted of 98% ethonal concentration, 1:42 the ratio of white birch bark to solvent, extraction temperature 50 °C, ultrasonic frequency 5 kHz and extraction time 3 h. Under the optimized condition, the maximum productivity of betulin predicted is 23.17%. The extraction productivity and purity of betulin under the optimized extraction conditions were great higher than that of the non-optimized condition. The present study demonstrates that ultrasound is a great efficiency tool for the fast extraction of betulin from white birch bark.  相似文献   

18.
This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent.  相似文献   

19.
Marigold flower petals are considered the richest source of lutein which possesses immense applications in the food and health sector. The study was undertaken to improve the stability of sunflower oil by enriching it with lutein extracted from marigold flower petals using safe and green technology. The extraction of lutein was optimized using Box-Behnken design by ultrasound-assisted extraction (UAE) employing sunflower oil as a solvent. The impact of three independent variables i.e., ultrasonic intensity, solid to solvent ratio, and extraction time were evaluated on the amount of lutein extracted and its antioxidant activity. Highest amount of lutein (21.23 mg/g) was extracted by employing ultrasonic intensity of 70 W/m2, extraction time of 12.5 min, and solid to solvent ratio of 15.75%. FT-IR spectra of lutein extracted by ultrasound and conventional extraction show similar peaks depicting that ultrasound does not have any impact on the functionality of lutein. Sunflower oil incorporated with lutein at 1000 PPM and the synthetic antioxidant (TBHQ) showed good oxidative stability than oil with 500 PPM lutein and no lutein during accelerated storage for a month. The oxidative stability was shown by different oil samples in the following order: TBHQ = 1000PPM lutein˃500PPM lutein ˃control oil. It was concluded that the ultrasound technique extracts lutein efficiently from marigold flowers and this lutein was effective in improving the oxidative stability of sunflower oil under accelerated storage conditions.  相似文献   

20.
A rapid method for quantitative determination of atrazine and simazine in honey samples was investigated. The procedure was based on the extraction of pesticides by sonication with benzene:water = 1:1 (v/v) mixture, thin-layer chromatographic separation and quantification by CAMAG Video Documentation system in conjunction with the Reprostar 3. The extraction procedure was optimized with regard to the amount of solvent, duration of sonication and the number of extraction steps. The apparent recovery of pesticides from honey was 92.3 ± 2.4 for atrazine and 94.2 ± 2.8 for simazine, when they were extracted in three steps for 20 min using 20 ml of solvent. Ultrasonic solvent extraction was compared with traditional shake-flask extraction method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号