首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The kinetics of oxidation of the chromium(III)-DL- aspartic acid complex, [CrIIIHL]+ by periodate have been investigated in aqueous medium. In the presence of FeII as a catalyst, the following rate law is obeyed:
Catalysis is believed to be due to the oxidation of iron(II) to iron(III), which acts as the oxidizing agent. Thermodynamic activation parameters were calculated. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of IO 4 - to CrIII.  相似文献   

2.
The oxidation of a ternary complex of chromium(III), [CrIII(DPA)(Mal)(H2O)2]?, involving dipicolinic acid (DPA) as primary ligand and malonic acid (Mal) as co-ligand, was investigated in aqueous acidic medium. The periodate oxidation kinetics of [CrIII(DPA)(Mal)(H2O)2]? to give Cr(VI) under pseudo-first-order conditions were studied at various pH, ionic strength and temperature values. The kinetic equation was found to be as follows: \( {\text{Rate}} = {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} \mathord{\left/ {\vphantom {{\left[ {{\text{IO}}_{4}^{ - } } \right]\left[ {{\text{Cr}}^{\text{III}} } \right]_{\text{T}} \left( {{{k_{5} K_{5} + k_{6} K_{4} K_{6} } \mathord{\left/ {\vphantom {{k_{5} K_{5} + k_{6} K_{4} K_{6} } {\left[ {{\text{H}}^{ + } } \right]}}} \right. \kern-0pt} {\left[ {{\text{H}}^{ + } } \right]}}} \right)} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}}} \right. \kern-0pt} {\left\{ {\left( {\left[ {{\text{H}}^{ + } } \right] + K_{4} } \right) + \left( {K_{5} \left[ {{\text{H}}^{ + } } \right] + K_{6} K_{4} } \right)\left[ {{\text{IO}}_{4}^{ - } } \right]} \right\}}} \) where k 6 (3.65 × 10?3 s?1) represents the electron transfer reaction rate constant and K 4 (4.60 × 10?4 mol dm?3) represents the dissociation constant for the reaction \( \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)_{2} } \right]^{ - } \rightleftharpoons \left[ {{\text{Cr}}^{\text{III}} \left( {\text{DPA}} \right)\left( {\text{Mal}} \right)\left( {{\text{H}}_{2} {\text{O}}} \right)\left( {\text{OH}} \right)} \right]^{2 - } + {\text{H}}^{ + } \) and K 5 (1.87 mol?1 dm3) and K 6 (22.83 mol?1 dm3) represent the pre-equilibrium formation constants at 30 °C and I = 0.2 mol dm?3. Hexadecyltrimethylammonium bromide (CTAB) was found to enhance the reaction rate, whereas sodium dodecyl sulfate (SDS) had no effect. The thermodynamic activation parameters were estimated, and the oxidation is proposed to proceed via an inner-sphere mechanism involving the coordination of IO4 ? to Cr(III).  相似文献   

3.
Kinetics of aqua ligand substitution from cis-[Ru(bpy)2(H2O)2]2+ by three vicinal dioximes, namely dimethylglyoxime (L1H), 1,2-cyclohexane dionedioxime (L2H) and α-furil dioxime (L3H) have been studied spectrophotometrically in the 45–60 °C temperature range. The rate constants increase with increasing dioxime concentration and approach a limiting condition. We propose the following rate law for the reaction in the 3.5–5.5 pH range: where k 2 is the interchange rate constant from outer sphere to inner sphere complex and K E is the outer sphere association equilibrium constant. Activation parameters were calculated from the Eyring plots for all three systems: ΔH  = 59.2 ± 8.8, 63.1 ± 6.8 and 69.7 ± 8.5 kJ mol−1, ΔS  = −122 ± 27, −117 ± 21 and −99 ± 26 J K−1 mol−1 for L1H, L2H and L3H, respectively. An associative interchange mechanism is proposed for the substitution process. Thermodynamic parameters calculated from the temperature dependence of the outer sphere association equilibrium constants give negative ΔG 0 values for all the systems studied at all the temperatures (ΔH 0 = 30.05 ± 2.5, 18.9 ± 1.1 and 11.8 ± 0.2 kJ mol−1; ΔS 0 = 123 ± 8, 94 ± 3 and 74 ± 1 J K−1 mol−1 for L1H, L2H and L3H, respectively), which also support our proposition.  相似文献   

4.
For getting an insight into the mechanism of atmospheric autoxidation of sulfur(IV), the kinetics of this autoxidation reaction catalyzed by CoO, Co2O3 and Ni2O3 in buffered alkaline medium has been studied, and found to be defined by Eqs. I and II for catalysis by cobalt oxides and Ni2O3, respectively.
(I)
(II)
The values of empirical rate parameters were: A{0.22(CoO), 0.8 L mol−1s−1 (Co2O3)}, K 1{2.5 × 102 (Ni2O3)}, K 2{2.5 × 102(CoO), 0.6 × 102 (Co2O3)} and k 1{5.0 × 10−2(Ni2O3), 1.0 × 10−6(CoO), 1.7 × 10−5 s−1(Co2O3)} at pH 8.20 (CoO and Co2O3) and pH 7.05 (Ni2O3) and 30 °C. This is perhaps the first study in which the detailed kinetics in the presence of ethanol, a well known free radical scavenger for oxysulfur radicals, has been carried out, and the rate laws for catalysis by cobalt oxides and Ni2O3 in the presence of ethanol were Eqs. III and IV, respectively.
(III)
(IV)
For comparison, the effect of ethanol on these catalytic reactions was studied in acidic medium also. In addition, alkaline medium, the values of the inhibition factor C were 1.9 × 104 and 4.0 × 10L mol−1 s for CoO and Co2O3, respectively; for Ni2O3, C was only 3.0 × 102 only. On the other hand, in acidic medium, the values of this factor were all low: 20 (CoO), 0.7 (Co2O3) and 1.4 (Ni2O3). Based on these results, a radical mechanism for CoO and Co2O3 catalysis in alkaline medium, and a nonradical mechanism for Ni2O3 in both alkaline and acidic media and for cobalt oxides in acidic media are proposed.  相似文献   

5.
The kinetics and mechanism of the reduction of enneamolybdonickelate(IV) by arsenite in aqueous acid solution was studied by spectrophotometry. The reaction rate increases with increasing concentrations of H+ and with temperature. The associated rate law is: . The rate constants and activation parameters of the rate-determining step were evaluated. A mechanism related to this reaction was proposed.  相似文献   

6.
The oxidation of H2NOH is first-order both in [NH3OH+] and [AuCl4 ]. The rate is increased by the increase in [Cl] and decreased with increase in [H+]. The stoichiometry ratio, [NH3OH+]/[AuCl4 ], is 1. The mechanism consists of the following reactions.
The rate law deduced from the reactions (i)–(iv) is given by Equation (v) considering that [H+] K a.
The reaction (iii) is a combination of the following reactions:
The activation parameters for the reactions (ii) and (iii) are consistent with an outer-sphere electron transfer mechanism.  相似文献   

7.
The stoichiometries, kinetics and mechanism of the reduction of tetraoxoiodate(VII) ion, IO4 to the corresponding trioxoiodate(V) ion, IO3 by n-(2-hydroxylethyl)ethylenediaminetriacetatocobaltate(II) ion, [CoHEDTAOH2] have been studied in aqueous media at 28 °C, I = 0.50 mol dm−3 (NaClO4) and [H+] = 7.0 × 10−3 mol dm−3. The reaction is first order in [Oxidant] and [Reductant], and the rate is inversely dependent on H+ concentration in the range 5.00 × 10−3 ≤ H+≤ 20.00 × 10−3 mol dm−3 studied. A plot of acid rate constant versus [H+]−1 was linear with intercept. The rate law for the reaction is:
- \frac[ \textCoHEDTAOH2 - ]\textdt = ( a + b[ \textH + ] - 1 )[ \textCoHEDTAOH2 - ][ \textIO4 - ] - {\frac{{\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]}}{{{\text{d}}t}}} = \left( {a + b\left[ {{\text{H}}^{ + } } \right]^{ - 1} } \right)\left[ {{\text{CoHEDTAOH}}_{2}^{ - } } \right]\left[ {{\text{IO}}_{4}^{ - } } \right]  相似文献   

8.
The oxidation of aquaethylenediaminetetraacetatocobaltate(II) [Co(EDTA)(H2O)]−2 by N-bromosuccinimide (NBS) in aqueous solution has been studied spectrophotometrically over the pH 6.10–7.02 range at 25 °C. The reaction is first-order with respect to complex and the oxidant, and it obeys the following rate law:
\textRate = k\textet K 2 K 3 [ \textCo\textII ( \textEDTA )( \textH 2 \textO ) - 2 ]\textT [\textNBS] \mathord/ \vphantom [\textNBS] ( [ \textH + ] + K 2 ) ( [ \textH + ] + K 2 ) {\text{Rate}} = k^{\text{et} } K_{ 2} K_{ 3} \left[ {{\text{Co}}^{\text{II}} \left( {\text{EDTA}} \right)\left( {{\text{H}}_{ 2} {\text{O}}} \right)^{ - 2} } \right]_{\text{T}} {{[{\text{NBS}}]} \mathord{\left/ {\vphantom {{[{\text{NBS}}]} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {\left[ {{\text{H}}^{ + } } \right]{ + }K_{ 2} } \right)}}  相似文献   

9.
Summary The oxidation of H2O2 by [W(CN)8]3– has been studied in aqueous media between pH 7.87 and 12.10 using both conventional and stopped-flow spectrophotometry. The reaction proceeds without generation of free radicals. The experimental overall rate law, , strongly suggests two types of mechanisms. The first pathway, characterized by the pH-dependent rate constant k s, given by , involves the formation of [W(CN)8· H2O2]3–, [W(CN)8· H2O2·W(CN)8]6– and [W(CN)8· HO]3– intermediates in rapid pre-equilibria steps, and is followed by a one-electron transfer step involving [W(CN)8·HO]3– (k a) and its conjugate base [W(CN)8·O]4– (k b). At 25 °C, I = 0.20 m (NaCl), the rate constant with H a =40±6kJmol–1 and S a =–151±22JK–1mol–1; the rate constant with H b =36±1kJmol–1 and S b =–136±2JK–1mol–1 at 25 °C, I = 0.20 m (NaCl); the acid dissociation constant of [W(CN)8·HO]3–, K 5 =(5.9±1.7)×10–10 m, with and is the first acid dissociation constant of H2O2. The second pathway, with rate constant, k f, involves the formation of [W(CN)8· HO2]4– and is followed by a formal two-electron redox process with [W(CN)8]3–. The pH-dependent rate constant, k f, is given by . The rate constant k 7 =23±6m –1 s –1 with and at 25°C, I = 0.20 m (NaCl).  相似文献   

10.
The mixed-valence 24-vanadophosphate (1) has been synthesized and characterized in the solid state by IR, magnetism, EPR, XPS, and elemental analysis. Single-crystal X-ray analysis was carried out on (Na-1), which crystallizes in the triclinic system, space group , with a = 17.168(3) ?, b = 18.1971(14) ?, c = 20.1422(13) ?, α = 114.753(3)°, β = 99.390(4)°, γ = 95.124(4)°, and Z = 2. Polyanion 1 has an unusual, open structure composed of 2 RuIIIO6 octahedra, 2 VIVO6 octahedra, 14 VVO5 square-pyramids, 8 VVO4 tetrahedra, and 2 PO4 tetrahedra which are all directly linked via edges and corners. The outer surface of 1 is decorated with six RuII(dmso)3 groups. XPS studies on Na-1 confirm the presence of 2 RuIII and 6 RuII as well as 22 VV and 2 VIV centers. Magnetic susceptibility data on Na-1 show that the VIV–RuIII pairs are coupled antiferromagnetically, with J 1 = −13 K and J 2 ∼ −3 K. We did not detect any peak in our EPR measurements on Na-1, thus supporting the conclusion that Na-1 is diamagnetic in its ground state. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. In Memoriam Prof. F. A. Cotton  相似文献   

11.
The standard molar Gibbs free energy of formation of YRhO3(s) has been determined using a solid-state electrochemical cell wherein calcia-stabilized zirconia was used as an electrolyte. The cell can be represented by: ( - )\textPt - Rh/{ \textY2\textO\text3( \texts ) + \textYRh\textO3( \texts ) + \textRh( \texts ) }//\textCSZ//\textO2( p( \textO2 ) = 21.21  \textkPa )/\textPt - Rh( + ) \left( - \right){\text{Pt - Rh/}}\left\{ {{{\text{Y}}_2}{{\text{O}}_{\text{3}}}\left( {\text{s}} \right) + {\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right) + {\text{Rh}}\left( {\text{s}} \right)} \right\}//{\text{CSZ//}}{{\text{O}}_2}\left( {p\left( {{{\text{O}}_2}} \right) = 21.21\;{\text{kPa}}} \right)/{\text{Pt - Rh}}\left( + \right) . The electromotive force was measured in the temperature range from 920.0 to 1,197.3 K. The standard molar Gibbs energy of the formation of YRhO3(s) from elements in their standard state using this electrochemical cell has been calculated and can be represented by: D\textfG\texto{ \textYRh\textO3( \texts ) }/\textkJ  \textmo\textl - 1( ±1.61 ) = - 1,147.4 + 0.2815  T  ( \textK ) {\Delta_{\text{f}}}{G^{\text{o}}}\left\{ {{\text{YRh}}{{\text{O}}_3}\left( {\text{s}} \right)} \right\}/{\text{kJ}}\;{\text{mo}}{{\text{l}}^{ - 1}}\left( {\pm 1.61} \right) = - 1,147.4 + 0.2815\;T\;\left( {\text{K}} \right) . Standard molar heat capacity Cop,m C^{o}_{{p,m}} (T) of YRhO3(s) was measured using a heat flux-type differential scanning calorimeter in two different temperature ranges from 127 to 299 K and 305 to 646 K. The heat capacity in the higher temperature range was fitted into a polynomial expression and can be represented by: $ {*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ $ \begin{array}{*{20}{c}} {\mathop C\nolimits_{p,m}^{\text{o}} \left( {{\text{YRh}}{{\text{O}}_3},{\text{s,}}T} \right)\left( {{\text{J}}\;{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \right)} & { = 109.838 + 23.318 \times {{10}^{ - 3}}T\left( {\text{K}} \right)} & { - 12.5964 \times {{10}^5}/{T^2}\left( {\text{K}} \right).} \\ {} & {\left( {305 \leqslant T\left( {\text{K}} \right) \leqslant 646} \right)} & {} \\ \end{array} The heat capacity of YRhO3(s) was used along with the data obtained from the electrochemical cell to calculate the standard enthalpy and entropy of formation of the compound at 298.15 K.  相似文献   

12.
The mechanism of the Co(II) catalytic electroreduction of water insoluble CoR2 salt in the presence of cysteine was developed. CoR2 = cobalt(II) cyclohexylbutyrate is the component of a carbon paste electrode. Electrode surface consecutive reactions are: (a) fast (equilibrium) reaction of the complex formation, (b) rate-determining reversible reaction of the promoting process of CoR(Ac+) complex formation, (c) rate-determining irreversible reaction of the electroactive complex formation with ligand-induced adsorption, and (d) fast irreversible reaction of the electroreduction. Reactions (a,b) connected with CoR2 dissolution and reactions (c,d) connected with CoR2 electroreduction are catalyzed by . Regeneration of (reactions “b,d”) and accumulation of atomic Co(0) (reaction “d”) take place. Experimental data [Sugawara et al., Bioelectrochem Bioenergetics 26:469, 1991]: i a vs E (i a is anodic peak, E is cathodic accumulation potential), i a vs , and i a vs pH have been quantitatively explained.  相似文献   

13.
l-cysteine undergoes facile electron transfer with heteropoly 10-tungstodivanadophosphate, [ \textPV\textV \textV\textV \textW 1 0 \textO 4 0 ]5 - , \left[ {{\text{PV}}^{\text{V}} {\text{V}}^{\text{V}} {\text{W}}_{ 1 0} {\text{O}}_{ 4 0} } \right]^{5 - } , at ambient temperature in aqueous acid medium. The stoichiometric ratio of [cysteine]/[oxidant] is 2.0. The products of the reaction are cystine and two electron-reduced heteropoly blue, [PVIVVIVW10O40]7−. The rates of the electron transfer reaction were measured spectrophotometrically in acetate–acetic acid buffers at 25 °C. The orders of the reaction with respect to both [cysteine] and [oxidant] are unity, and the reaction exhibits simple second-order kinetics at constant pH. The pH-rate profile indicates the participation of deprotonated cysteine in the reaction. The reaction proceeds through an outer-sphere mechanism. For the dianion SCH2CH(NH3 +)COO, the rate constant for the cross electron transfer reaction is 96 M−1s−1 at 25 °C. The self-exchange rate constant for the - \textSCH2 \textCH( \textNH3 + )\textCOO - \mathord
/ \vphantom - \textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - ·\textSCH2 \textCH( \textNH3 + )\textCOO - {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } \mathord{\left/ {\vphantom {{{}^{ - }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } } {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }}} \right. \kern-\nulldelimiterspace} {{}^{ \bullet }{\text{SCH}}_{2} {\text{CH}}\left( {{{\text{NH}}_{3}}^{ + } } \right){\text{COO}}^{ - } }} couple was evaluated using the Rehm–Weller relationship.  相似文献   

14.
Partial dechelation of one tridentate N,N??,O-histidine in trans-imidazole-[Cr(His)2]+ (where N and N?? are amine and imidazole nitrogen atoms, respectively, and O is carboxylate oxygen) has been studied. The aquation process is both acid and base catalyzed and the product with didentate His is converted back into the substrate at pH 4?C7. Kinetics of the chelate ring opening were studied spectrophotometrically within the 0.01?C1.0?M HClO4 and 0.1?C1.0?M NaOH ranges under first-order conditions. The following dependences of k obs on [H+] and [OH?] were determined: $$ \left( {k_{\text{obs}} } \right)_{\text{H}} = a + b\left[ {{\text{H}}^{ + } } \right] + c/\left[ {{\text{H}}^{ + } } \right] $$ $$ \left( {k_{\text{obs}} } \right)_{\text{OH}} = a^{\prime } + b^{\prime } \left[ {{\text{OH}}^{ - } } \right]. $$ Mechanisms of the chelate ring opening in acidic and alkaline media are proposed, and activation parameters for the process in acidic solution have been determined. Additionally, kinetic studies were performed on the second dechelation stage in acidic media, which is ca. 15 times slower than the first one.  相似文献   

15.
Thermodynamics and kinetics of hydrophilic ion transfers across water|n-octanol (W|OCT) interface have been electrochemically studied by means of novel three-phase and thin-film electrodes. Three-phase electrodes used for thermodynamics measurements comprise edge plane pyrolytic graphite, the surface of which was partly modified with an ultrathin film of OCT, containing hydrophobic lutetium bis(tetra-tert-butylphthalocyaninato) (Lu[tBu4Pc]2) as a redox probe. The transfers of anions and cations from W to OCT were electrochemically driven by reversible redox transformations of Lu[tBu4Pc]2 to chemically stable lipophilic monovalent cation and anion , respectively. Upon reduction of Lu[tBu4Pc]2, the transfers of alkali metal cations from W to OCT have been studied for the first time, enabling estimation of their Gibbs transfer energies. For kinetic measurements, a thin-film electrode configuration has been used, consisting of the same electrode covered completely with a thin layer of OCT that contained the redox probe and a suitable electrolyte. Combining the fast and sensitive square-wave voltammetry with thin-film electrodes, the kinetics of , , and Cl transfers have been estimated. Dedicated to Professor Dr. Yakov I. Tur’yan on the occasion of his 85th birthday.  相似文献   

16.
The kinetics of oxidation of N,N′-ethylenebis(isonitrosoacetyleacetoneimine)copper(II) complex, CuIIL, by N-bromosuccinimide (SBr) in weakly aqueous acidic solutions was studied under pseudo-first-order conditions. Plots of ln(A  ? A t ) versus time where A t and A are absorbance values of the Cu(III) product at time t and infinity, respectively, showed marked deviations from linearity. The curves showed an acceleration of reaction rate consistent with an autocatalytic behavior. In the presence of Hg(II) ions, plots of ln(A  ? A t ) versus time are linear up to >85 % of reaction. The value of the observed rate constant, k obs, increases with decreasing pH. At constant reaction conditions, the dependence of the observed rate constants, k obs, is described by Eq. (1). 1 $$ k_{\text{obs}} = k_{\text{o}} + k_{1} \left[ {{\text{H}}^{ + } } \right] $$ The dependence of both k o and k 1 on [SBr] is not linear. The mechanism of the title reaction is consistent with an inner sphere mechanism in which a pre-equilibrium step precedes the electron transfer step. The overall rate law is represented by Eq. (2) where [CuIIL]t and K 1 represent the total copper(II) complex concentration and the pre-equilibrium formation constant, respectively. 2 $$ d\left[ {{\text{Cu}}^{\text{III}} {\text{L}}^{ + } } \right]/dt = \left\{ {\left( {k_{\text{o}} + k_{1} \left[ {{\text{H}}^{ + } } \right]} \right)\left[ {\text{SBr}} \right]\left[ {{\text{Cu}}^{\text{II}} {\text{L}}} \right]_{t} } \right\}/\left( {1 + K_{1} \left[ {\text{SBr}} \right]} \right) $$ .  相似文献   

17.
Three new binuclear copper complexes of formulae $ \left[ {{\text{Cu}}_{2}^{\text{II}} {\text{Pz}}_{2}^{\text{Me3}} {\text{Br}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (1), $ \left[ {{\text{Cu}}_{ 2}^{\text{II}} {\text{Pz}}_{2}^{\text{Ph2Me}} {\text{Cl}}_{ 2} \left( {{\text{PPh}}_{ 3} } \right)_{ 2} } \right] $ (2) and $ \left[ {{\text{Cu}}_{2}^{\text{II}} \left( {{\text{Pz}}^{\text{PhMe}} } \right)_{ 4} {\text{Cl}}_{ 4} } \right] $ (3) (PzMe3?=?3,4,5-trimethylpyrazole, PzPh2Me?=?4-methyl-3,5-diphenylpyrazole and PzPhMe?=?3-methyl-5-phenylpyrazole) have been synthesized and characterized by chemical analysis, FTIR and 31P NMR spectroscopy and single-crystal X-ray diffraction. Complex 1 is a doubly bromo-bridged dimer, while complexes 2 and 3 are chloro-bridged dimers. The Cu(II) centers are in a distorted tetrahedral geometry for 1 and 2 and a distorted square pyramidal N2Cl3 environment for 3.  相似文献   

18.
The kinetics of oxidation of [FeII(phen)2(H2O)2]2+ (phen = 1,10-phenanthroline) by periodate were investigated in aqueous acidic medium at different [H+] over a temperature range of 20–40 °C. The reaction was studied under pseudo-first-order conditions by taking [IO 4 ? ] > tenfold over [FeII(phen)2(H2O) 2 2+ ]. The reaction rate increases with increasing [H+], and the kinetics of oxidation obeyed the following rate law:
$$ {\text{Rate}} = \left[ {{\text{Fe}}^{\text{II}} ({\text{phen}})_2({\text{H}}_{2} {\text{O}})_{2}^{2 + } } \right]\left[ {{\text{IO}}_{4}^{ - } } \right]\left\{ {k_{4} K_{2} + k_{5} K_{1} K_{3} [{\text{H}}^{ + } ]} \right\} $$
The surfactant sodium dodecyl sulfate was found to enhance the rate, whereas cetyltrimethylammonium bromide had little effect. Activation parameters associated with k 2 and k 3 were calculated. An electron transfer from Fe(II) to I(VII) is identified as the rate-determining step. The I(VI) species thus generated reacts in a fast step with another Fe(II) complex.
  相似文献   

19.
The kinetics of the decomposition of hydrogen peroxide was studied in aqueous medium in the temperature range 25–40°C in the presence of Wofatit KPS-resin in the form of Cu(II)-ammine complex ions. The rate constant was deduced at various degrees of resin cross-linkage and different concentrations of hydrogen peroxide. The order of the decomposition reaction varied from first order to half order, i.e., the order of the reaction decreased with increasing the concentration of H2O2. The decomposition process was found to be a catalytic reaction which was controlled by the chemical reaction of H2O2 molecules with the active species inside the resin particles. The mechanism of the reaction can be summarized by the equation in which the subsequent reactions of the probable active complex are discussed.  相似文献   

20.
The extraction kinetics of uranium(VI) and thorium(IV) with Tri-iso-amyl phosphate (TiAP) from nitric acid medium has been investigated using a Lewis Cell. Especially, dependences of the extraction rate on stirring speed, temperature, interfacial area were firstly measured to elucidate the extraction kinetics regimes. The experimental results demonstrated that extraction kinetic of U(VI) is governed by chemical reactions at interface with an activation energy, Ea, of 43.41 kJ/mol, while the rate of Th(IV) extraction is proved to be intermediate controlled, of which the Ea is 23.20 kJ/mol. Reaction orders with respect to the influencing parameters of the extraction rate are determined, and the rate equations of U(VI) and Th(IV) at 293 K have been proposed as $$ {\text{r}} = - {\text{dcUO}}_{ 2} \left( {{\text{NO}}_{ 3} } \right)_{ 2} /{\text{dt}} = 1. 80 \times 10^{ - 3} \left[ {{\text{UO}}_{ 2} \left( {{\text{NO}}_{ 3} } \right)_{ 2} } \right]^{ 1.0 1} \left[ {\text{TiAP}} \right]^{0. 5 5} , $$ $$ {\text{r}} = - {\text{dcTh }}\left( {{\text{NO}}_{ 3} } \right)_{ 4} /{\text{dt}} = 1. 8 8\times 10^{ - 3} \left[ {{\text{Th }}\left( {{\text{NO}}_{ 3} } \right)_{ 4} } \right]^{ 1.0 4} \left[ {\text{TiAP}} \right]^{ 1. 7 7} \left[ {{\text{HNO}}_{ 3} } \right]^{0. 3 8} , $$ respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号