首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymerization of the N-carboxy anhydride of N?-carbobenzyloxy-L -lysine in the presence of multifunctional polymeric initiator, copoly(L -lysine γ-methyl-L -glutamate) was studied in N,N-dimethylformamide containing 3% (v/v) of dimethyl sulfoxide. Multichain copoly(α-amino acid), i.e., multi-N?-poly(N?-carbobenzyloxy-L -lysine)copoly(L -lysine γ-methyl-L -glutamate), was obtained with linear poly(N?-carbobenzyloxy-L -lysine) as by-product that could be removed by reprecipitation as was evidenced by gel-permeation chromatography. The degree of polymerization of the branch polymer chains estimated by the osmometric molecular weight determination and amino acid analysis was between 20 and 60, which decreased with increasing lysine content of the polymeric initiator. The stability of α-helical conformation of the multichain copoly(α-amino acid) was studied in the chloroform–dichloroacetic acid system at 25°C by the ORD technique. The α-helical conformation of poly(N?-carbobenzyloxy-L -lysine) branches was less stable than those of linear poly(N?-carbobenzyloxy-L -lysine) and the core molecular chains of the multichain copoly(α-amino acid).  相似文献   

2.
A number of multi-N?-poly(γ-benzyl-L -glutamyl)copoly(L -lysine γ-methyl-L -glutamate)s with branches having various degrees of polymerization and with various intervals of the grafting sites in the core molecule were prepared in N,N-dimethylformamide containing dimethyl sulfoxide by the reaction of N-carboxy anhydride of γ-benzyl L -glutamate with random copoly(L -lysine γ-methyl-L -glutamate)s of different composition with various anhydride-initiator ratios. The relationship between the intrinsic viscosity measured in a coil solvent, dichloroacetic acid (DCA), and the number-average molecular weight determined by osmometry was found to be expressed by the Mark–Houwink–Sakurada equation for the multichain copoly(α-amino acid)s which were made from the same polymeric initiator. The observed α values of the multichain copoly(α-amino acid)s in the equation were lower than that of linear poly(γ-benzyl-L -glutamate). The solvent induced helix–coil transition of the multichain copolymer was investigated in the chloroform?DCA system by the ORD technique. Two kinds of transition regions were clearly distinguished: The α-helices of the core molecules underwent the transition at lower DCA concentration and those of the branch chains at higher DCA concentration. The reduced viscosity of the multichain copoly-(α-amino acid) increased slightly between the two transition regions, in contrast to the large decrease in the reduced viscosity of linear poly(γ-benzyl-L -glutamate) during the helix–coil transition.  相似文献   

3.
The esterification of the carboxyl group in copoly(γ-benzyl-L -glutamyl-L -glutamic acid) was carried out using N-hydroxysuccinimide and dicyclohexylcarbodimide to yield the activated site for the coupling reaction with amino compounds. The α-helix stability of the reactive copolymer thus obtained is remarkably affected in the presence of succinimide ring. This copolymer was proved to react nearly completely with amino alcohols such as 2-aminoethanol, 3-aminopropanol, and diethanolamine. The copoly(N5-hydroxyalkyl-L -glutamine) thus prepared is insoluble in water, since the benzyl ester remains in this copolymer. The copoly(α-amino acids) having another functional group were also prepared using aminoalkylsilane. Crosslinked poly(α-amino acids) were prepared by the reaction of the reactive copolymer with a low-molecular-weight polymer of PBLG having one amino group on each end of its main chain which was obtained from the corresponding NCA using p-diaminobenzene as an initiator. Another crosslinked polymer was prepared using an alkyl diamine such as 1,6-diaminohexane or 1,12-diaminododecane as a crosslinking reagent. The crosslinked copoly(α-amino acids) bearing the activated site are able to further react with various compounds having amino groups.  相似文献   

4.
As a novel polymer adsorbent for optical resolution, cross-linked polystyrene gel incorporating poly(α-amino acids) was synthesized. The helicity of the incorporated poly(γ-benzyl L -glutamate) (PBLG) was demonstrated by Fourier-transform infrared spectroscopy. The immobilized PBLG ( I ) was converted to poly(L -glutamic acid) ( II ) and poly(N5-benzyl-L -glutamine) ( III ). The ability of I - III to resolve DL-mandelic acid was evaluated by liquid chromatography using toluene/dioxane as an eluent. Of the three resins, III resolves the recemate most effectively. In order to clarify the mechanism of chiral recognition, poly(N5-benzyl-D -glutamine) and poly(N4-benzyl-L -asparagine), with opposite helicity, was incorporated. In Contrast to III , these adsorbents demonstrated affinity for the L isomer. This result strongly indicates that the helical structure of the immobilized poly(α-amino acids) is essential for chiral recognition.  相似文献   

5.
Spin-lattice relaxation times (T1), spin-spin relaxation times (T2), and nuclear Overhauser enhancements (NOE), at 75.5 MHz are reported for α-13C nuclei of poly (γ-benzyl-L -glutamate) in deuterated dimethylformamide at 60°C and of poly(γ-hexyl-L -glutamate) in cyclohexanone at 48 and 79°C. It is shown that for molecular weights above 105, the polypeptides cannot be considered as essentially rigid helices with internal librational motions; additional backbone flexing motions contribute to the relaxation behavior.  相似文献   

6.
Good yields of some crystalline γ-alkyl esters of L -glutamic acid were obtained by carrying out the esterfication with a small (20–50 mole-%) excess of alcohol in aqueous hydrochloric acid or 60–80% sulfuric acid followed by neutralization with an alkaline solution. This new method made it possible to synthesize various γ-alkyl L -glutamates, including those higher than ethyl, and consequently, various poly(γ-alkyl L -glutamates) such as methyl, ethyl, n-propyl, n-butyl, isobutyl, and isoamyl. The conformation of these poly-L -glutamates in the solid state was determined by the infrared absorption method. The molecular motions of the polymers of γ-methyl, -ethyl, -n-propyl, -n-butyl, and-isoamyl L -glutamates and poly(γ-methyl-D -glutamate) in the solid state were studied by NMR, and dielectric and mechanical measurements. At temperatures up to 400°K., the NMR spectra of poly(γ-methyl D -glutamate) can be explained only by rotational motion of the side chain. Also, from NMR results, rotational motion of C?O groups in the side chain of poly(γ-methyl D -glutamate) is expected near room temperature, and such a motion was examined by dielectric measurements. Rotation of C?O groups in the side chains of polymers of γ-methyl, γ-ethyl, γ-n-propyl, γ-n-butyl, and γ-isoamyl L -glutamate was also observed near room temperature by dielectric measurements in the frequency range from 102 to 106 cps. Activation energies obtained by dielectric and mechanical measurements were similar to those for the side chain motions of the corresponding esters of poly(methacrylic acid). Although it has been noted that the molecular motion of poly(γ-benzyl L -glutamate) in the solid state at room temperature may be related to the motion of its back bone, the molecular motion in these poly-L -glutamates at these temperatures can be explained only in terms of side-chain rotation.  相似文献   

7.
Copoly(γ-stearly-L -glutamate-γ-methyl-L -glutamate)s with various compositions were synthesized by the ester exchange reaction of poly(γ-methyl-L -glutamate). Circular dichroism studies were carried out for solution and solid film as a function of the degree of stearylation and temperature. The slight and gradual temperature dependence of molecular ellipticity was observed for solution of all the copolyglutamates studied here and for the solid film of the copolyglutamate with the degree of stearylation of 16%, indicative of no reversal in the helix sense. However the remarkable change in negative molecular ellipticity with temperature was detected for the solid film of the copolyglutamate with a low degree of stearylation, e.g., 52%, whereas the drastic change in molecular ellipticity from a negative to positive value appeared for that with a higher degree of stearylation. This is discussed in terms of the reversal in the helix sense from a right- to left-handed α helix with the increase of temperature occurring at the melting temperature of the ordered side chain region.  相似文献   

8.
The polymerization of γ-benzyl-DL -glutamate NCA in the presence of poly(γ-benzyl-L -glutamate) was investigated. At the initial stage the D -enantiomer was preferentially polymerized (ca. 35% ee) by using triethylamine as an initiator. Enantioselectivity was independent of the molecular weight of preformed poly(γ-benzyl-DL -glutamate).  相似文献   

9.
The kinetics of the solid-state polymerization of the N-carboxy anhydrides (NCA) of the L - and racemic forms of γ-benzyl glutamate (BG), γ-methyl glutamate (MG), and ?-carbobenzoxylysine (CL) were studied as a function of temperature and aqueous vapor pressure. The reaction of the L -forms of BG and MG was characterized by an induction period, while the CL derivative reached its maximum polymerization rate at the outset of the reaction. Water vapor had only a minor effect in accelerating the reaction and reducing the chain length of the polypeptides formed. The racemic monomers were found to have different crystal structures from those of the L -isomers and the racemic MG and CL derivatives polymerized much more slowly than the corresponding optically active crystals. All polymers gave diffuse x-ray diffraction patterns. Infrared spectra of the L -polypeptides showed that they were largely in the α-helical form. The polymer derived from the racemic BG–NCA had a content of α-helical material which suggested that it consisted of polypeptides with long blocks of D and L residues.  相似文献   

10.
A thermally reversible crystal transition was found for γ-helical poly(γ-n-alkyl L -glutamate)s (alkyl = ethyl, propyl, butyl, and amyl). The transition temperature is higher than that of the side-chain mechanical dispersion, and decreases from 115 to ?5°C, as the alkyl groups become longer. The transition in poly(γ-n-propyl L -glutamate) is clearly first order. The structures were analyzed by x-ray diffraction at various temperatures. It is noteworthy that the pseudohexagonal form observed below the transition temperature is less ordered than the hexagonal form at higher temperatures. The mechanism of this transition is discussed.  相似文献   

11.
By heating with iron powder at 120–150° some γ-bromo-α, β-unsaturated carboxylic methyl esters, and, less smothly, the corresponding acids, were lactonized to Δ7alpha;-butenolides with elimination of methyl bromide. The following conversions have thus been made: methyl γ-bromocrotonate ( 1c ) and the corresponding acid ( 1d ) to Δα-butenolide ( 8a ), methyl γ-bromotiglate ( 3c ) and the corresponding acid ( 3d ) to α-methyl-Δα-butenolide ( 8b ), a mixture of methyl trans- and cis-γ-bromosenecioate ( 7c and 7e ) and a mixture of the corresponding acids ( 7d and 7f ) to β-methyl-Δα-butenolide ( 8c ). The procedure did not work with methyl trans-γ-bromo-Δα-pentenoate ( 5c ) nor with its acid ( 5d ). Most of the γ-bromo-α, β-unsaturated carboxylic esters ( 1c, 7c, 7e and 5c ) are available by direct N-bromosuccinimide bromination of the α, β-unsaturated esters 1a, 7a and 5a ; methyl γ-bromotiglate ( 3c ) is obtained from both methyl tiglate ( 3a ) and methyl angelate ( 4a ), but has to be separated from a structural isomer. The γ-bromo-α, β-unsaturated esters are shown by NMR. to have the indicated configurations which are independent of the configuration of the α, β-unsaturated esters used; the bromination always leads to the more stable configuration, usually the one with the bromine-carrying carbon anti to the carboxylic ester group; an exception is methyl γ-bromo-senecioate, for which the two isomers (cis, 7e , and trans, 7d ) have about the same stability. The N-bromosuccinimide bromination of the α,β-unsaturated carboxylic acids 1b , 3b , 4b , 5b and 7b is shown to give results entirely analogous to those with the corresponding esters. In this way γ-bromocrotonic acid ( 1 d ), γ-bromotiglic acid ( 3 d ), trans- and cis-γ-bromosenecioic acid ( 7d and 7f ) as well as trans-γ-bromo-Δα-pentenoic acid ( 5d ) have been prepared. Iron powder seems to catalyze the lactonization by facilitating both the elimination of methyl bromide (or, less smoothly, hydrogen bromide) and the rotation about the double bond. α-Methyl-Δα-butenolide ( 8b ) was converted to 1-benzyl-( 9a ), 1-cyclohexyl-( 9b ), and 1-(4′-picoly1)-3-methyl-Δα-pyrrolin-2-one ( 9 c ) by heating at 180° with benzylamine, cyclohexylamine, and 4-picolylamine. The butenolide 8b showed cytostatic and even cytocidal activity; in preliminary tests, no carcinogenicity was observed. Both 8b and 9c exhibited little toxicity.  相似文献   

12.
Various investigations have been carried out in order to further elucidate the chiral recognition mechanism of immobilized poly(N5-benzyl-L -glutamine) (PBLGN) for optical resolution. The shape and dimension of the chiral recognition site are determined by resolution of hydantoin derivatives, with substituents of varied bulkiness at the chiral center. The site of the hydrogen bonding association of the enantiomers responsible for chiral recognition is also elucidated. Several adsorbents with electron-donating/withdrawing substituents incorporated into the PBLGN side chain phenyl are synthesized and evaluated for the resolution of (RS)-5-isopropylhydantoin in order to elucidate the association site of PBLGN. Based on the experimental evidences obtained, a most plausible mechanism of chiral recognition is proposed. Additionally, adsorbents with several other poly(α-amino acid)s are also synthesized, and the effect of poly(α-amino acid) side chain length is discussed.  相似文献   

13.
Copoly (α-amino acid)s consisting ofL-glutamic acid residue andN 5-ω hydroxyalkyl-L-glutamine residue, i.e., 2-hydroxyethyl, 3-hydroxypropyl, and di-2-hydroxyethyl derivatives were prepared by the reactions of copoly (L-glutamic acid) containing succinimide ester with corresponding amino alcohols. The conformation of these copolymers was examined by the CD and infrared measurements. These three copolymers containing about 20–30% hydroxyalkyl groups undergo a methanol-induced and a pH-induced conformational transitions. The copolymer containing about 50% 3-hydroxypropyl group assumes the α-helical conformation in the pH region from 2.5 to 11.6, and in a methanol-water mixture (9∶1). On the other hand, the copolymer containing about 60% di-2-hydroxyethyl groups does not allow any helical conformation even at lower pH and also even in a trifluoroethanol-water mixture (9∶1), suggesting that the branched hydroxyalkyl group is unfavorable for the formation of α-helix. Furthermore, the poly(N 5-di-2-hydroxyethyl-L-glutamine) is shown to have a rather disordered structure in the solid state.  相似文献   

14.
The solid-state polymerization of various α-amino acid NCAs was investigated and the results were compared with those obtained by heterogeneous polymerization in acetonitrile. Essential differences were found in the polymerizability of the NCAs in these two systems. In the solid state, L-leucine NCA was the most reactive among the NCAs examined, and its reactivity was even higher than in the precipitation polymerization of acetonitrile solutions. On the other hand, glycine NCA was the most inert among the NCAs examined in the solid state. The difference between the reactivities of glycine NCA and L-alanine NCA was interpreted in terms of their crystal structures. Several kinetic features of the solid-state polymerization were studied on γ-benzyl-L -glutamate NCA.  相似文献   

15.
The title compound was prepared via a malonic ester synthesis starting with α-chloromethylpyrazine [2], and ending, after an asymmetric enzymatic hydrolysis of the racemic N-acetyl-β-2-pyrazinylalanine to the L -form of the new amino acid. The optical purity was ascertained by 1H-NMR analysis at 360 MHz of the diastereoisomeric dipeptides L -pyrazinylalanine-L -leucine and D -pyrazinylalanine-L -leucine. Hydrophobic, steric and electronic parameters for its side chain were also estimated, which can be useful for the quantitative study of structure-activity relationships of biologically active peptide derivatives. The new amino acid could be introduced in the place of phenylalanine in the enkephalin-like pentapeptide [D -alanyl2, leucine5]enkephalin, thus showing good stability towards the classical methods of peptide synthesis.  相似文献   

16.
To enhance its solubility in common solvents poly(γ-methyl-L -glutamate) (PMG) was transesterificated with ethylene chlorohydrin, ethylene cyanohydrin, and β,β,β-trichloroethanol, respectively. The aminolyses of the resulting polymers proceeded easily in pendant ester groups to give the corresponding amides in reasonable yields without main chain fission. By these procedures the incorporation of functional groups such as azide, amino acid, and thiol into PMG is successfully performed.  相似文献   

17.
Recently heat capacities Cp of poly(amino acid)s of all naturally occurring amino acids have been determined. In a second step the heat capacities of four copoly(amino acid) s are studied in this research. Poly(L -lysine · HBr-alanine), poly(L -Lysine · HBr-phenylalanine), poly(sodium-L -glutamate-tyrosine), and poly(L -proline-glycine-proline) heat capacities are measured by differential scanning calorimetry in the temperature range 230–390 K. This is followed by an analysis using approximate group vibrations and fitting the Cp contributions of the skeletal vibrations of the corresponding homopolymers to a two-parameter Tarasov function. Good agreement is found between experiment and calculation. Predictions of heat capacities based on homopoly(amino acid)s are thus expected to be possible for all polypeptides, and enthalpies, entropies, and Gibbs functions for the solid state can be derived.  相似文献   

18.
A new route to completely protected α-methylated α-amino acids starting from alanine is described (see Scheme). These derivatives, which are obtained via base-catalyzed opening of the oxazolidinones (2S,4R)- and (2R,4S)- 2 , can be directly employed in peptide synthesis. The synthesis of both enantiomers of Z-protected α-methylaspartic acid β-(tert-butyl)ester (O4-(tert-butyl) hydrogen 2-methylaspartates (R) or (S)- 4a ), α-methyl-glutamic acid γ-(tert-butyl) ester (O5-(tert-butyl) hydrogen 2-methylglutamate (R)- or (S)- 4b ), and of Nε-bis-Boc-protected α-methyllysine (N6,N6-bis[(tert-butyloxy)carbonyl]-2-methyllysine (R)- or (S)- 4c ) is described in full detail.  相似文献   

19.
The treatment of a β3‐amino acid methyl ester with 2.2 equiv. of lithium diisopropylamide (LDA), followed by reaction with 5 equiv. of N‐fluorobenzenesulfonimide (NFSI) at ?78° for 2.5 h and then 2 h at 0°, gives syn‐fluorination with high diastereoisomeric excess (de). The de and yield in these reactions are somewhat influenced by both the size of the amino acid side chain and the nature of the amine protecting group. In particular, fluorination of N‐Boc‐protected β3‐homophenylalanine, β3‐homoleucine, β3‐homovaline, and β3‐homoalanine methyl esters, 5 and 9 – 11 , respectively, all proceeded with high de (>86% of the syn‐isomer). However, fluorination of N‐Boc‐protected β3‐homophenylglycine methyl ester ( 16 ) occurred with a significantly reduced de. The use of a Cbz or Bz amine‐protecting group (see 3 and 15 ) did not improve the de of fluorination. However, an N‐Ac protecting group (see 17 ) gave a reduced de of 26%. Thus, a large N‐protecting group should be employed in order to maximize selectivity for the syn‐isomer in these fluorination reactions.  相似文献   

20.
The conformational transition of multichain copoly(-amino acid)s consisting of copoly(-methyl-L-glutamyl-L-lysine) as backbone molecule and poly(-benzyl-L-glutamate) as branch molecules was studied in chloroform and DCA mixtures. The helix stability of backbone molecule is strongly affected by the length of branch molecules. In the case of the multichain copolymer having short branch molecular chains, i.e.,DP br <10, the helix conformation of the backbone molecule is strictly affected by some interferences among the randomly coiled molecular chains. In the case of water-soluble multichain copolymer having poly(L-glutamic acid) or poly(L-lysine) as branch molecules, the transitional process from coil to helix is observed by depressing hydrostatic repulsion among the ionized side chain of branch molecules. However, such conformational transition is depressed to a considerable extent by interferences among the branch molecules.Abbreviations used (shown alphabetically) A/I molar ratio of NCA to initiator - Cbz carbobenzyloxy - DCA dichloroacetic acid - DMF N,N-dimethylformamide - DP br number-average degree of polymerization of branches of multichain copolymer - Fw br weight fraction of-benzyl-L-glutamyl residues of multichain copolymer - Mn number-average molecular weight - NCA N-carboxy anhydride of-amino acid - ORD optical rotatory dispersion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号