首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between organic molecules and the surface of nanoparticles (NPs) strongly affects the size, properties and applications of surface-modified metal sulfide semiconductor nanocrystals. From this viewpoint, we compared the influence of cationic surfactants with various chain lengths and anionic surfactants with different head groups, as surface modifiers during synthesis of ZnS NPs in aqueous medium. The surfactant adsorbs on the surface of the particles as micelle-like aggregates. These aggregates can form even at the concentration lower than critical micelle concentration (cmc) due to interaction between the polar groups and the NPs. The nature of interaction depends specifically on the surfactant polar group. The ability of surfactant to form the micelle-like aggregates on the surface of the NPs correlates with their cmc. This leads to the fact that the surfactant with longer tail stabilizes the NPs better since its cmc is lower. The adsorption of the surfactant on the NPs also stabilizes them by the change of their charge which is in accordance with the correlation of zeta potential with the particles stability. The energetics of surface states generating interesting photoluminescence (PL) properties in ZnS NPs has been governed by the nature of surfactant molecules. In general, the size, structure, and stability of the ZnS NPs can be controlled by the choice of suitable surfactant.  相似文献   

2.
The present investigation is focused on to find out the role of TiO2 nanoparticles (NPs) on altering the dielectric and electro-optical parameters of nematic liquid crystal (NLC). In addition to this, we also optimized the concentration of dopant (0.25 wt%) for a saturation value of permittivity and dielectric anisotropy in the doped system. Dielectric spectroscopy has been performed with the variation of frequency and temperature to investigate the various dielectric parameters, which demonstrate that the investigated NLC is of positive dielectric anisotropy; the observed result shows a decrement in the value of relative permittivity and dielectric anisotropy; however, the permittivity value increases for higher concentration of dopant but remains less than that of pure NLC. Electro-optical measurements have also been performed to compute the optical response of pure and dispersed NLC. It is found that optical response decreases for the NP-doped systems. This optimized concentration of NPs in NLC matrix can have various credential applications in the field of active matrix display and holography.  相似文献   

3.
ZnO nanoparticles (NPs) with tunable morphologies were synthesized by a hybrid electrochemical–thermal method at different calcination temperatures without the use of any surfactant or template. The NPs were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction, dynamic light scattering, thermogravimetry–differential thermal analysis, scanning electron microscope and N2 gas adsorption–desorption studies. The FT-IR spectra of ZnO NPs showed a band at 450 cm?1, a characteristic of ZnO, which remained fairly unchanged at calcination temperatures even above 300 °C, indicating complete conversion of the precursor to ZnO. The products were thermally stable above 300 °C. The ZnO NPs were present in a hexagonal wurtzite phase and the crystallinity of ZnO increased with an increasing calcination temperature. The ZnO NPs calcined at lower temperature were mesoporous in nature. The surface areas of ZnO NPs calcined at 300 and 400 °C were 51.10 and 40.60 m2 g?1, respectively, which are significantly larger than commercial ZnO nanopowder. Surface diffusion has been found to be the key mechanism of sintering during heating from 300 to 700 °C with the activation energy of sintering as 8.33 kJ mol?1. The photocatalytic activity of ZnO NPs calcined at different temperatures evaluated by photocatalytic degradation of methylene blue under sunlight showed strong dependence on the surface area of ZnO NPs. The ZnO NPs with high surface area showed enhanced photocatalytic activity.  相似文献   

4.
A systematic experimental and theoretical study of the origin of the enhanced photocatalytic performance of Mg‐doped ZnO nanoparticles (NPs) and Mg‐doped ZnO/reduced graphene oxide (rGO) nanocomposites has been performed. In addition to Mg, Cd was chosen as a doping material for the bandgap engineering of ZnO NPs, and its effects were compared with that of Mg in the photocatalytic performance of ZnO nanostructures. The experimental results revealed that Mg, as a doping material, recognizably ameliorates the photocatalytic performance of ZnO NPs and ZnO/graphene nanocomposites. Transmission electron microscopy (TEM) images showed that the Mg‐doped and Cd‐doped ZnO NPs had the same size. The optical properties of the samples indicated that Cd narrowed the bandgap, whereas Mg widened the bandgap of the ZnO NPs and the oxygen vacancy concentration was similar for both samples. Based on the experimental results, the narrowing of the bandgap, the particle size, and the oxygen vacancy did not enhance the photocatalytic performance. However, Brunauer–Emmett–Teller (BET) and Barret–Joyner–Halenda (BJH) models showed that Mg caused increased textural properties of the samples, whereas rGO played an opposite role. A theoretical study, conducted by using DFT methods, showed that the improvement in the photocatalytic performance of Mg‐doped ZnO NPs was due to a higher electron transfer from the Mg‐doped ZnO NPs to the dye molecules compared with pristine ZnO and Cd‐doped ZnO NPs. Moreover, according to the experimental results, along with Mg, graphene also played an important role in the photocatalytic performance of ZnO.  相似文献   

5.
We report the effect of dispersion of zinc oxide (ZnO) nanoparticles (NPs) on the conductivity, birefringence and fluorescence properties of commercially available room temperature nematic liquid crystal (LC) with the variation of dopant concentration. Significant changes have been observed in transition enthalpy, DC conductivity, photoluminescence and birefringence values of the LC material by the addition of ZnO NPs. While the inclusion of NPs enhances the electrical conductivity of the composite system, it results in a reduction in the birefringence value, which can be attributed to a decrease in the order parameter of the system due to the perturbed geometry of the LC. This also results in the increase in threshold voltage value, which has been speculated as due to the piezoelectric nature of the ZnO NPs. The analysis of the fluorescence spectrum indicates that ZnO NPs enhance the intensity in the LC phase along with a small blue shift.  相似文献   

6.
In this article, the effect of molecular weight on the interfacial tension and interfacial dilational viscoelasticity of polystyrene sulfonate/surfactant adsorption films at the water-octane interface have been studied by spinning drop method and oscillating barriers method respectively. The experimental results show that different interfacial behaviors can be observed in different type of polyelectrolyte/surfactant systems. PSS/cationic surfactant CTAB systems show the classical behavior of oppositely charged polyelectrolyte/surfactant systems and can be well explained by electrostatic interaction. Molecular weight of PSS plays a crucial role in the nature of adsorption film. The complex formed by CTAB and higher molecular weight PSS, which has larger dimension and stronger interaction, results in higher dilational modulus at lower surfactant bulk concentration. In the case of PSS/anionic surfactant SDS systems, the co-adsorption of PSS at interface through hydrophobic interaction with alkyl chain of SDS leads to the increase of interfacial tension and the decrease of dilational modulus at lower surfactant bulk concentration. For PSS/nonionic surfactant T × 100 systems, PSS may form a sublayer contiguous to the aqueous phase, which has little effect on interfacial tension but slightly decreases dilational modulus.  相似文献   

7.
An experimental characterisation of dispersions of ZnO nanoparticles (NPs) in the columnar matrix of a discotic liquid crystal has been carried out. Thermophysical properties have been investigated by absorbance spectroscopy, differential scanning calorimetry, polarising optical microscopy, dielectric measurements, dc conductivity, X-ray diffraction and infrared (IR) dichroism technique. The experimental results show that inclusion of ZnO NPs into the columnar matrix enhances the orientational order in the columnar phase and does not affect the two-dimensional hexagonal lattice. The alignment in homeotropic samples is also found to be better with the addition of the NPs. The real (?′) and imaginary parts (?′′) of the permittivity increase by a small amount in the dispersions. The order parameter measured using the IR dichroism technique in the face-on geometry (homeotropic alignment) shows an enhancement for the composite system. The dc conductivity is also found to increase by an order of magnitude by addition of the NPs. These results suggest an improved stacking of the disc-like molecules within the columns by the insertion of the ZnO NPs possessing high charge mobility. Such composite systems would be highly beneficial for potential applications such as organic conductors.  相似文献   

8.
《Arabian Journal of Chemistry》2020,13(11):7921-7938
Monometallic ZnO nanoparticles were prepared by hydrolysis of zinc acetate with ammonium hydroxide solution. Bimetallic zinc-silver nanoparticles (ZnO-AgNPs) were prepared using metal displacement galvanic cell reaction in presence of cetyltrimethylammonium bromide (CTAB). The optical and photo-physical properties of both NPs were determined. Surface plasmon resonance (SPR) intensity of ZnO-AgNPs depends on the ratio of metal salt precursors and other experimental conditions. The optical band gap (2.98 eV), agglomeration number (26819.92), and molar concentration (1.14 × 10−4 mol/liter) of ZnO-AgNPs were determined. Langmuir adsorption monolayer, Freundlich, intraparticles diffusion and multilayer adsorption isotherms used for the determination of maximum adsorption efficiency and adsorption isotherm parameters to the removal of safranin dye from an aqueous solution. The kinetics of safranin removal has also been discussed with pseudo-first order, pseudo-second order, intraparticle diffusion and multilayer kinetic models. The antibacterial and antifungal activities of ZnO, Ag and ZnO-AgNPs were determined against human pathogens using growth kinetic and disk diffusion methods. The concentrations of ZnO-AgNPs have significant effect on the bacterial growth kinetics. The death rate constants increase with increasing the NPs concentrations. It has been found that the ZnO-AgNPs hold higher microbial activities than that of monometallic counterpart, ZnO and AgNPs. Mechanism of bacterial growth and death was discussed.  相似文献   

9.
A systematic study highlighting the effect of cadmium selenide quantum dots (CdSe QDs) with varying concentrations of 0.05, 0.10 and 1.0 wt% doping on the electrooptical and dielectric parameters of ferroelectric liquid crystal (FLC) is presented. No considerable change is observed in phase transition temperature and tilt angle with CdSe QDs doping at lower and higher dopant level. Substantial enhancement of localised electric field at higher doping level (1.0 wt%) of CdSe QDs manifested the ≈48% reduction in the switching response of FLC nanocolloids at 30°C. Reduction in the spontaneous polarisation, dielectric constant and absorption strength could be attributed to the antiparallel correlation among dopant and matrix molecules, ion capturing in the capping additive layer and enhancement of the rotational viscosity of the nanocolloids, respectively. Goldstone mode relaxation frequency is found to be decreased with doping up to 0.10 wt% concentration and showed reverse effect at higher QDs concentration. QDs doping effect on the photoluminescence intensity is also discussed.  相似文献   

10.
ABSTRACT

Zinc oxide (ZnO) nanoparticles of spherical symmetry (average size of ≈ 20 nm) have been synthesised via a non-aqueous lyotropic liquid crystalline (LLC) templating process. Lyotropic liquid crystalline nanocolloids are prepared via dispersing 0.05, 0.1 and 0.5 wt.% ZnO nanoparticles in non-aqueous lyotropic phase. No structural phase change has been seen with the doping of nanoparticles as stable lamellar phases are observed in all the cases. Stability of the lamellar structure and orientation of the ZnO nanoparticles in the liquid crystalline matrix may be attributed to the interfacial surface charge interactions. A significant increase and pronounced dispersion in dielectric permittivity of the ZnO/LLC nanocolloids could be the result of parallel coupling among guest/host, higher dipole- moment of the ZnO nanoparticles and Maxwell-Wagner polarisation. The variation of relaxation parameters has also been discussed and correlated with the dielectric and structural parameters. ZnO/lyotropic nanocolloids devices exhibit dc conductivity of the order of 10?5S/m owing to the increase in the number of ions (of the order of 1019m?3) in the doped systems. Nanocolloids exhibits, the refractive index of range 1.40 to 1.45 and the wide bandgap of the range 4.1–4.5 eV.  相似文献   

11.
The interaction between silver nanoparticles (Ag NPs) of different surface charge and surfactants relevant to the laundry cycle has been investigated to understand changes in speciation, both in and during transport from the washing machine. Ag NPs were synthesized to exhibit either a positive or a negative surface charge in solution conditions relevant for the laundry cycle (pH 10 and pH 7). These particles were characterized in terms of size and surface charge and compared to commercially laser ablated Ag NPs. The surfactants included anionic sodium dodecylbenzenesulfonate (LAS), cationic dodecyltrimethylammoniumchloride (DTAC) and nonionic Berol 266 (Berol). Surfactant-Ag NP interactions were studied by means of dynamic light scattering, Raman spectroscopy, zeta potential, and Quartz Crystal Microbalance. Mixed bilayers of CTAB and LAS were formed through a co-operative adsorption process on positively charged Ag NPs with pre-adsorbed CTAB, resulting in charge reversal from positive to negative zeta potentials. Adsorption of DTAC on negatively charged synthesized Ag NPs and negatively charged commercial Ag NPs resulted in bilayer formation and charge reversal. Weak interactions were observed for nonionic Berol with all Ag NPs via hydrophobic interactions, which resulted in decreased zeta potentials for Berol concentrations above its critical micelle concentration. Differences in particle size were essentially not affected by surfactant adsorption, as the surfactant layer thicknesses did not exceed more than a few nanometers. The surfactant interaction with the Ag NP surface was shown to be reversible, an observation of particular importance for hazard and environmental risk assessments.  相似文献   

12.
In the present work, Zinc Oxide (ZnO) nanoparticles (NPs) were synthesized by the chemical co-precipitation method using Zinc Chloride as the initial chemical, while Nickel and Cobalt chloride as dopants. Phase identification of metal (Ni, Co) doped Zinc Oxide nanoparticles (NPs) was observed using x-ray diffraction (XRD). The small lattice distortion or phase changes appeared due to shifting of diffraction angles peaks towards larger angle in ZnO are corresponded to metal (Ni, Co) dopant. The average crystallite size appears to decrement in NP size from 7.67 nm to 6.52 nm and 5.35 nm to 5.17 nm with increasing 5 % to 80 % of metal (Ni, Co) dopant respectively. The optical characteristics, including the absorption spectra of the prepared sample were observed through UV–Vis spectroscopy, Meanwhile SEM confirmed the observation of composition change in specimen with metal (Ni, Co) dopant concentration. The bandgap value was also found decrement 5.23 eV to 5.05 eV with increment of metal (Ni, Co) dopant concentration. The functional groups were measured by Fourier transformation infrared spectroscopy (FTIR). FTIR peaks found the metal (Ni, Co) doped ZnO with the vibration mode of (Zn2+ –O2?) ions due to the increment of dopant concentrations. Furthermore, electrical results show the ohmic behavior of prepared samples. These findings indicate the possibility of tuning optical, structural and electrical properties of metal (Ni, Co) doped ZnO with various dopant concentrations of Nickel and will have great potential to find application in optoelectronic devices.  相似文献   

13.
In this study, Ga‐doped ZnO thin films were prepared using sol–gel technique via spin‐coating method. The effect of Ga‐doping dopant (0, 1, 2 and 3 at.%) on microstructural, optical, electrical and photoelectrochemical (PEC) characteristics have been investigated. The spin‐coating was repeated six times, and as‐obtained thin films were then annealed at 500 °C for 1 h in vacuum. After annealing, all samples revealed single phase of hexagonal ZnO polycrystalline structure with a main peak of (002) in X‐ray diffraction (XRD) pattern. Raman spectra show that the vibration strength of E2 is highly decreased by Ga doping. Thicknesses of all samples were ~300 nm measured via scanning electron microscopy (SEM) cross‐section images and alpha‐step. The optical band gap and resistivity of samples were in the range of 3.24 to 3.28 eV and 102 to 9 Ohm cm, respectively. Resulting from PEC response, the 2 at.% Ga‐doped ZnO thin film has a better PEC performance with photocurrent density of ~0.14 mA/cm2 at 0.5 V versus saturated calomel electrode (SCE) under illumination with the intensity of 100 mW/cm2. This value was about seven times higher than the un‐doped film (reference sample). Observed higher photocurrent density was likely because of a suitable Ga‐doping concentration causing a lower resistivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This article describes the adsorption of sodium dodecyl benzene sulfonate, an anionic surfactant, on a hematite surface and that when the surface is preadsorbed with polyacrylamide. The adsorption of surfactant on a hematite surface has been studied through equilibration and during kinetics measurements at three pH levels, viz. 4.0, 7.0, 8.9. The surfactant adsorbs strongly on the hematite surface. The adsorption density at equilibrium as well as the rate of adsorption are dependent on the suspension pH. The maximum adsorption density has been observed at pH 4, which reflects strong adsorption of negatively charged sulfonate ions on the oppositely charged Fe2O3 surface (point of zero charge, 6.4). The adsorption density reaches its equilibrium value sooner in the case of an alkaline suspension and later in the case of acidic pH. The polymer surfactant interaction has been noticed in the present study and is also a function of pH. The hematite mineral when preadsorbed with the polymer draws fewer of the surfactant molecules at lower surface coverage (during the initial period of the kinetics measurement) irrespective of the pH. When the adsorption of the surfactant reaches a value which is near the equilibrium one, the pH effect is evident. In the case of acidic pH, the surfactant adsorbs more on the hematite surface when preadsorbed with the polymer compared to the bare surface. In the case of neutral or alkaline pH, however, the density of surfactant adsorption remains lower throughout the kinetics measurement when the surface is preadsorbed with the flocculant compared to the bare surface. The particles also remain flocculated till the end of the experiment, whereas at pH 4 the particles are deflocculated. In addition to pH, the electrostatic nature of the adsorbent and the presence of anionic surfactant have an influence on the flocculation–deflocculation phenomena. The polymer–surfactant interaction has been schematically represented. The surfactant is bound with polymeric chains as a combination of its monomeric form as well as in the form of association in the case of acidic media and in competition with polymer in the case of alkaline media. Received: 18 April 2000/Accepted: 2 August 2000  相似文献   

15.
通过纳米二氧化硅的硅烷化改性,使其在高矿化度盐水中可以稳定存在的前提下,研究了改性纳米颗粒与阳离子表面活性剂十二烷基三甲基氯化铵混合体系的溶液稳定性及协同稳定CO2泡沫的效果.研究结果表明,无机盐离子对改性纳米颗粒与阳离子表面活性剂间的静电吸引力具有屏蔽作用,且矿化度越高,屏蔽效果越明显,从而混合溶液更易于在高盐水中稳定;纳米颗粒表面的活性剂吸附层受二者浓度的影响,进而影响了颗粒的亲/疏水性;当混合体系中的表面活性剂浓度低于临界胶束浓度(CMC)时,混合溶液与CO2的界面张力高于单独活性剂溶液,而当活性剂浓度高于CMC时,对CO2-溶液界面张力几乎无影响,最低界面张力可降至6 mN/m左右;改性纳米颗粒的加入可以进一步提高CO2体相泡沫半衰期一倍以上,但受二者浓度比例的影响;纳米颗粒的加入有效提高了多孔介质中泡沫的表观黏度,最大增幅由20 mPa·s增至55 mPa·s左右,泡沫黏度增加接近3倍,增强了CO2泡沫驱的封堵作用.  相似文献   

16.
《Liquid crystals》2012,39(12):1808-1820
ABSTRACT

The effect of biowaste porous carbon nanoparticles (PCNPs) on the dielectric and electro-optical properties of nematic liquid crystal (LC) mixture (1823A) of 4-(4-alkyl-cyclohexyl) benzene isothiocyanates and 4-(4-alkyl-cyclohexyl) biphenyl isothiocyanates has been studied. The dielectric permittivity of nematic LC has been increased with the dispersion of carbon NPs. The dielectric anisotropy has been calculated and found to be decreased with the dispersion of PCNPs into the pure nematic LC. The response time and birefringence have been also observed with the variation of temperature, frequency as well as the concentrations of carbon NPs. After the dispersion of PCNPs achieved better birefringence and faster response in the dispersed system, which is the significant application in display devices. Threshold voltage splay elastic coefficient and rotational viscosity have been calculated for both pure and NPs dispersed nematic system. Its value is increased with the dispersion of NPs. Additionally, photoluminescence and figure of merit have investigated as a comparative study of nematic matrix as well the dispersed system. The experimental results have been found to have good agreement with the theoretical data of nematic LC. An effort has been made to explain these experimental results on the basis of interaction between nematic molecules and carbon NPs.  相似文献   

17.
ABSTRACT

We reported a green and simple method for biosynthesizing zinc oxide nanoparticles (ZnO NPs) using Corymbia citriodora leaf extract as reducing and stabilizing agent. SEM, EDX, XRD, UV–VIS spectroscopy, Raman spectroscopy and TGA have been used for characterizing the biosynthesized ZnO NPs. The results indicating the ZnO NPs synthesized by C. citriodora leaf extract have high purity and the average size is 64?nm. The photocatalytic activity of the ZnO NPs has been investigated by degradation methylene blue under visible light irradiation. Due to the smaller size, the biosynthesized ZnO NPs showed an excellent photocatalytic performance.  相似文献   

18.
Ultraviolet (UV) photodetector constructed by ZnO material has attracted intense research and commercial interest. However, its photoresistivity and photoresonse are still unsatisfied. Herein, we report a novel method to assemble ZnO nanoparticles (NPs) onto the reduced graphite oxide (RGO) sheet by simple hydrothermal process without any surfactant. It is found that the high-quality crystallized ZnO NPs with the average diameter of 5 nm are well dispersed on the RGO surface, and the density of ZnO NPs can be readily controlled by the concentration of the precursor. The photodetector fabricated with this ZnO NPs-RGO hybrid structure demonstrates an excellent photoresponse for the UV irradiation. The results make this hybrid especially suitable as a novel material for the design and fabrication of high performance UV photodector.  相似文献   

19.
Adsorption on ZnO of sodium poly(acrylate) (PAA), sodium poly(styrene sulfonate) (PSS) and a monomer surfactant [hydroxyethylidene diphosphonate (HEDP)] was investigated in suspensions initially equilibrated at pH 7. Results demonstrate interplay in the adsorption mechanism between zinc complexation, salt precipitation, and ZnO dissolution. In the case of PAA, the adsorption isotherm exhibits a maximum attributed to the precipitation of zinc polyacrylate. PSS and HEDP formed high-affinity adsorption isotherms, but the plateau adsorption of HEDP was significantly lower than that of PSS. The adsorption isotherm of each additive is divided into two areas. At low additive concentration (high zinc/additive ratio), the total zinc concentration in the solution decreased and the pH increased upon addition. At a higher additive ratio, zinc concentration and pH increased with the organic concentration. The increase in pH is due to the displacement of hydroxyl ions from the surface and the increase in zinc concentration results from the dissolution of ZnO due to the complexation of zinc ions by the organics. The stability of the ZnO dispersions was investigated by measurement of the particle size distribution after addition of various amounts of polymers. The three additives stabilized the ZnO dispersions efficiently once full surface coverage was reached.  相似文献   

20.
Physicochemistry of micellization of binary mixtures of cetylpyridinium chloride (CPC) and Triton X-100 (TX-100) have been investigated and the data collected have been analyzed and correlated. Tensiometric, conductometric, spectrophotometric, calorimetric and polarographic methods have been employed in the study. Parameters like critical micellar concentration (CMC), counter-ion binding, energetics of micellization, interfacial surfactant adsorption and minimum area of amphiphile head groups at CMC have been determined. The diffusion coefficients of pure and mixed micelles in solution have been determined by the polarographic method. The regular solution theory of Rubingh has been considered to get information on the micellar composition and their mutual interaction (synergistic for the studied system) in solution. The packing of the monomer in micelle has been estimated to witness spherical geometry for CPC and its mixtures with TX-100, whereas the later has been found to be spheroidal. Polarographic measurements have evidenced comparable diffusion coefficients of CPC and TX-100 micelles whereas their mixed micelles have shown lower values with a minimum, at equimolar composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号