首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Deposition of semiconductor tin and lead sulfide films from thiourea coordination compounds was examined. The nature of the ligands in the intermediate complexes formed was determined, and the influence of these precursors on the formation and phase composition of SnS, SnS2, and PbS thin layers was examined.  相似文献   

2.
The morphological manipulation and structural characterisation of TiO2?CMgO binary system by an aqueous particulate sol?Cgel route were reported. Different crystal structures including pure MgTiO3, mixtures of MgTiO3 and TiO2 and mixtures of MgTiO3 and Mg2TiO4 were tailored by controlling Mg:Ti molar ratio and annealing temperatures as the processing parameters. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) revealed that all compounds crystallised at the low temperature of 500?°C. Furthermore, it was found that the average crystallite size of the compounds depends upon the Mg:Ti molar ratio as well as the annealing temperature, being in the range 3?C5?nm at 500?°C and around 6?nm at 700?°C. Field emission scanning electron microscope (FE-SEM) analysis revealed that the deposited thin films had nanocrystalline structure with the average grain size of 25?C30?nm at 500?°C depending upon the Mg:Ti molar ratio. Moreover, atomic force microscope (AFM) images presented that the thin films had a hill-valley like morphology made up of small grains.  相似文献   

3.
In this work, gold nanoparticles lower than 10?nm were prepared in an aqueous medium using two charged silsesquioxanes, the propylpyridinium chloride and propyl-1-azonia-4-azabicyclo[2.2.2]octane chloride, as stabilizer agents which revealed to be water-soluble. This stabilization method is innovative allowing thin films containing gold nanoparticles to be obtained, and it was used for the first time in the preparation of carbon paste electrodes (CPEs). The charged silsesquioxanes were characterized by liquid 13C NMR. The gold nanoparticle/silsesquioxane systems were characterized by ultraviolet–visible spectroscopy (UV–Vis) and transmission electron microscopy. In sequence, they were immobilized on silica matrix coated with aluminum oxide. The resulting solid materials designated as Au-Py/AlSi and Au-Db/AlSi were characterized by infrared spectroscopy and N2 adsorption/desorption isotherms. The results showed that the gold nanoparticle/silsesquioxane systems are strongly adhered to the surface-forming thin films. The Au-Py/AlSi and Au-Db/AlSi materials were used to prepare CPEs for the electrooxidation of nitrite (NO 2 ? ) using cyclic voltammetry and differential pulse voltammetry. The Au-Py/AlSi and Au-Db/AlSi CPEs showed high sensitivity and detection limits of 71.87 and 53.66?μA?mmol–1?L and 1.3 and 3.0?μmol?L–1, respectively.  相似文献   

4.
Polymerizable tetrachloro‐perylenediimdes containing endo/exo‐norbornene groups on both imide sides were designed and synthesized. Endo/Exo‐type soluble ladder‐like polynorbornenes with perylenediimide (PDI) as bridges were prepared by ring‐opening metathesis polymerization (ROMP). XRD characterizations showed that the ladder‐like polynorbornenes had ordered structures similar to the supramolecular precursors assembled from the corresponding monomers. TGA measurements demonstrated great thermal stabilities for the both target P1‐Endo and P2‐Exo with Td of about 320 °C at 5 wt % loss, respectively, which is important for further application in devices. Both polymers have good solubility in common organic solvents and easy to form thin films. Photophysical studies and cyclic voltammetry investigations reveal that polynorbornene films have wide‐range absorption from 400 nm to 600 nm and the HOMO/LUMO energy levels could be matched well with the donor‐PCzTh‐TVDCN. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
Copper thin films were prepared by sono-electrodeposition method at different acid concentrations in the electrolyte. A potential of ?450 mV (100 mV negative than the Nernst potential) was selected for the deposition procedure for all the conditions. The thickness of films was found to be in the range of 100–600 nm. Electrochemical analysis was performed by chronoamperometry. Films were characterized by XRD, SEM, AFM, and study of the mechanical properties was done by nanoindentation.  相似文献   

6.
One step electrodeposition with an alternating double-potentiostatic(DPSED) program was used to prepare CuInSe2 thin films in nearly neutral aqueous electrolytes with sodium citrate complex. Linear sweep voltammetry(LSV) was measured to probe voltammetric properties of electrolytes with respect to Cu, In and Se individual precursor and their mixed solutions. Compositional and structural characteristics of the as-deposited and annealed films at 400 °C in Ar atmosphere for 0.5 h were analyzed by XRD and XPS. The results showed that reduction of Cu2+ to Cu+ at one potential point of ?800 mV and subsequently formation of CuIn alloy as well as metal In and amorphous Se at the other potential point of ?1400 mV were responsible for synthesis of CISe chalcopyrite. Composition self-regulation made DPSED films have three elements co-deposition and more uniform element distribution, which promoted chalcopyrite CISe formation.  相似文献   

7.
Barium strontium titanate (Ba0.65Sr0.35TiO3) ferroelectric thin films have been prepared by sol-gel method on Pt/Ti/SiO2/Si substrate. The X-ray diffraction (XRD) pattern indicated that the films were a polycrystalline perovskite structure and the atomic force microscope (AFM) image showed that the crystallite size and the root mean square roughness (RMS) were 90 nm and 3.6 nm, respectively. The X-ray photoelectron spectrum (XPS) images showed that Pt consisting in BST thin films was the metallic state, and the Auger electron spectroscopy (AES) analysed the Pt concentration in different depth profiles of BST thin films. The result displayed that the Pt diffusion in BST thin film is divided into two regions: near the BST/Pt interface, the diffusion type was volume diffusion, and far from the interface correspondingly, the diffusion type became grain boundary diffusion. In this paper, the previous researcher’s result was used to verify our conclusion.  相似文献   

8.
PPV‐based copolymers containing phenothiazine‐5‐oxide and phenothiazine‐5, 5‐dioxide moieties have been successfully synthesized by Wittig‐Horner reaction and characterized by means of UV‐vis, photoluminescence, electroluminescence spectra, and cyclic voltammetry. All of these copolymers can be dissolved in common organic solvents such as chloroform, tetrahydrofuran, and toluene. The PL maxima in the film state are located at 582, 556, and 552 nm for P1, P2, and P3, respectively. The HOMO and LUMO levels of P2 are found to be ?5.21 and ?2.68 eV, respectively; whereas those of P3 are found to be ?5.26 and ?2.71 eV, respectively. The cyclic voltammetry result indicates that the conversion of electron‐donating sulfide to electron‐withdrawing sulfoxide or sulfone group in polymers plays a dominating role in increasing its oxidation potential. Yellowish‐green light ranging from 568 to 540 nm was observed for the single layer device with the configuration of ITO/Polymer/Ca/Al. Double layer devices with Zn (BTZ)2 as a hole blocking layer exhibited enhanced EL performance compared to the single layer devices. The maximum brightness of the double layer devices of P1, P2, and P3 is 278, 400, and 796 cd/m2, respectively. The results of EL and electrochemical analyses revealed that they are promising candidate materials for organic, light‐emitting diodes with hole‐transporting ability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4291–4299, 2007  相似文献   

9.
Synthesis and applications of organotin(II) sulfide ({2,6‐(Me2NCH2)2C6H3}Sn)2(μ‐S) ( 1 ), organotin(II) thiophenolate {2,6‐(Me2NCH2)2C6H3}Sn(SPh) ( 2 ) and organotin(IV) heptasulfide {2,6‐(Me2NCH2)2C6H3}2Sn2S7 ( 3 ) as potential single‐source precursors (SSPs) for the deposition of SnS or SnS2 thin films using a spin‐coating method are reported. Compounds 1 , 2 and 3 differ either by tin oxidation state or by Sn:S ratio (Sn:S = 2:1 in 1 , 1:1 in 2 and 2:7 in 3 ). It is shown that compound 1 is not a suitable SSP for thin‐film fabrication using the spin‐coating process because of its incomplete decomposition at annealing temperature. However, compounds 2 and 3 seem to be promising SSPs for spin‐coating of amorphous semiconducting thin films of SnS and SnS2, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Homogeneous and transparent ZrO2 thin films were prepared by sol?Cgel dip coating method. The prepared ZrO2 thin films were annealed in air and O2 atmosphere at 500, 700 and 900?°C for 1, 5 and 10?h. X-Ray diffraction (XRD) pattern showed the formation of tetragonal phase with a change of stress in the films. Scanning electron microscope (SEM) revealed the nucleation and particle growth on the films. An average transmittance of >80?% (in UV?CVis region) was observed for all samples. The refractive index and direct energy band gap were found to vary as functions of annealing atmosphere, temperature and time. Photoluminescence (PL) revealed an intense emission peak at 379?nm weak emission peaks at 294, 586 and 754?nm. An enhancement of PL intensity was observed in films annealed in O2 atmosphere. This is due to reconstruction of zirconium nanocrystals interfaces, which help passivate the non-radiative defects. At 900?°C, oxygen atoms react with Zr easily at the interface and destroy the interface states acting as emission centres and quench the PL intensity of the film. The enhancement of the luminescence properties of ZrO2 by the passivation of non radiative defects presents in the films make it suitable for gas sensors development, tuneable lasers and compact disc (CD) read-heads.  相似文献   

11.
Reversible lithium intercalation and deintercalation behavior of atmospheric pressure plasma jet (APPJ)-synthesized organonickel oxide (NiO x C y ) thin films under various substrate distances is testified in an electrolyte (1?M LiClO4–propylene carbonate solution) at low driving voltages from ?0.5 to 1.5?V. Fast responses of 2?s bleaching at ?0.5?V and 6?s coloration at +1.5?V are accomplished for the nano-porous NiO x C y thin films. This study reveals that a rapid synthesis of electrochromic NiO x C y thin films in a single process via APPJ by 21?s is investigated. This study presents a noteworthy electrochromic performance in a light modulation with up to 43% of transmittance variation and a coloration efficiency of 36.3?cm2/C at a wavelength of 830?nm after 200?cycles of cyclic voltammetry measurements.  相似文献   

12.
New conjugated polymers based on separated PPV-type chromophores and incorporating different types of solubilizing side-groups (ethoxy: P1, hexyloxy: P2, dodecyloxy: P3 and benzyloxy: P4) were synthesized via Wittig polycondensation, using a series of bisphenol A-derived di(triphenylphosphonium) salts as starting monomers. The polymers are soluble in common organic solvents and their structures were confirmed by 1H NMR, 13C NMR and FTIR spectroscopies. The optical properties of these materials were investigated by UV–vis absorption and fluorescence spectroscopies. In dilute solution, quasi-identical fluorescence spectra were obtained and all the polymers showed a blue emission (420, 445 nm) and a narrow spectrum. In thin solid films, the polymers show side-group-dependent optical behavior and, whereas the emission remains blue in the case of P2, P3 and P4, a green fluorescence was observed for the ethoxylated polymer P1. From cyclic voltammetry analysis, the electrochemical band gaps were estimated to be 2.99, 3.07, 3.15 and 3.06 eV for P1, P2, P3 and P4, respectively. Single-layer diode devices of the [indium tin oxide/polymer/aluminum] configuration have been fabricated and show relatively low turn-on voltages between 2.6 and 4.9 V.  相似文献   

13.
Copper‐doped iron sulfide (CuxFe1?xS, x = 0.010–0.180) thin films were deposited using a single‐source precursor, Cu(LH)2Cl2 (LH = monoacetylferrocene thiosemicarbazone), by aerosol‐assisted chemical vapor deposition technique. The Cu‐doped FeS thin films were deposited at different substrate temperatures, i.e. 250, 300, 350, 400 and 450 °C. The deposited thin films were characterized by X‐ray diffraction (XRD) patterns, Raman spectra, scanning electron microscopy, energy dispersive X‐ray analysis (EDX) and atomic force microscopy. XRD studies of Cu‐doped FeS thin films at all the temperatures revealed formation of single‐phase FeS structure. With increasing substrate temperature from 250 to 450 °C, there was change in morphology from wafer‐like to cylindrical plate‐like. EDX analysis showed that the doping percentage of copper increased as the substrate temperature increased from 250 to 450 °C. Raman data supports the doping of copper in FeS films. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
薛明喆  傅正文 《化学学报》2007,65(23):2715-2719
采用脉冲激光溅射Fe和Se粉末的混合靶制备FeSe薄膜并用XRD、充放电和循环伏安测试研究了薄膜的结构和电化学性质. XRD结果显示, 当基片温度为200 ℃时, 薄膜主要由晶态的FeSe组成. 在电压1.0~3.0 V范围内, 该薄膜的可逆容量为360.8 mAh•g-1, 经过100次循环之后的放电容量为396.5 mAh•g-1, 具有很好的循环性能. ex situ XRD结果显示FeSe能够和Li发生可逆的电化学反应, 颗粒尺寸大于5 nm的纳米铁颗粒能够驱动Li2Se的分解并在充电过程中重新生成FeSe. FeSe具有较高的可逆容量和较好的循环性能, 可能成为一种优良的锂二次电池正极材料.  相似文献   

15.
Luminescent properties of Y3(Al,Ga)5O12:Ce3+ phosphor powder and thin films were obtained. The phosphor powder was used as target material for Pulsed Laser Deposition (PLD) of the thin films in the presence of different background gases. Excitation peaks for the powder were obtained at 439, 349, 225 and 189 nm and emission peaks at 512 and 565 nm. X-ray diffraction indicated that better crystallization took place for films deposited in a 20 mTorr O2 atmosphere. Atomic force microscope revealed an RMS value of 0.7 nm, 2.5 nm and 4.8 nm for the films deposited in vacuum, O2 and Ar atmospheres, respectively. The highest PL intensity was observed for films deposited in the O2 atmosphere. A slight shift in the wavelength of the PL spectra was obtained for the thin films due to a change in the crystal field. The thickness of the films varied from 120 nm to 270 nm with films deposited in vacuum having the thin layer and those in Ar having the thick layer. The stoichiometry of the powder was maintained in the film during the deposition as confirmed by Rutherford backscattering spectroscopy.  相似文献   

16.
The TiO2: Sb nanoscale thin films were deposited on glass substrates by the sol–gel dip-coating method. The influence of the dopant density on the structure and the phase transformation of the thin films were investigated by X-ray diffraction (XRD) and Raman spectra. From the results of XRD, the thin films were in a majority of anatase state. The results of Raman spectra indicated that the non-doped TiO2 thin film composed of not only anatase but also brookite phase. Dopant Sb enhances the transformation of the TiO2 from brookite to anatase phase. After doping proper amount of Sb, the thin films show more superhydrophilicity than the non-doped TiO2 thin film as well. The crystal size of the TiO2 : Sb is about 13.3–20 nm calculated from the XRD patterns.  相似文献   

17.
Molecular thin films of manganese (SAM-2), iron (SAM-3), and cobalt (SAM-4) phthalocyanine complexes, non-peripherally tetra-substituted with benzylmercapto, were formed on polycrystalline gold disc electrode by self-assembly technique. Surface characteristics of the films were interrogated by cyclic voltammetry. Significant passivation of voltammetry processes associated with bare gold surface (gold oxidation and underpotential deposition of copper) confirmed formation of the films. Electrocatalytic property of the films was evidenced from better voltammetry responses (less positive oxidation potential and better current signal) of the insecticide, carbofuran, on these films, relative to that on bare gold electrode. In terms of less positive oxidation potential, the FePc derivative (3) gave the best response, while the best current signal was observed on SAM-2-modified gold electrode. The average heterogeneous rate constant, k, for the oxidation of carbofuran was 3.6 × 10−2 cm s−1 on the SAM film with the best current signal (SAM-2).  相似文献   

18.
Using Prussian blue (PB) electrodeposited on gold-covered foil as a model system, we have demonstrated the usefulness of the time-derivative measurements of absorbance versus potential (linear potential-scan voltabsorptometry) for spectroelectrochemical characterization of thin electrochromic films. The time-derivative signals were monitored for PB at 680 and 420 nm in potassium, sodium and lithium electrolytes. Information obtained from cyclic voltabsorptometry is equivalent or complementary to that from conventional cyclic voltammetry. In the case of PB films investigated in lithium electrolyte, the voltabsorptometric time-derivative peaks are better defined than the respective voltammetric peaks. The combination of voltabsorptometry with voltammetry enables molar absorptivity and/or film loading to be determined. Also, concentration changes of differently colored mixed-valence redox centers can be monitored as a function of applied potential. Received: 16 January 1997 / Accepted: 11 March 1997  相似文献   

19.
Nanoscale Sb doped titanium dioxide thin films photocatalyst (Ti1-xSbO2) were obtained from dip-coating sol-gel method. The influence of dopant Sb density on the crystal structure and the phase transformation of the thin films were characterized by X-ray diffraction (XRD) and Raman spectra. The results of XRD showed that as-prepared films were not only in anatase state but also in brookite. The crystalline size was estimated to be around 13.3-20 nm. Raman spectra indicated there coexisted other phases and a transformation from brookite to anatase in the samples doped with 0.2% Sb. After doping a proper amount of Sb, the crystallization rate and the content of the anatase Ti1?xSbO2 in the thin films was clearly enhanced because Sb replaced part of the Ti of TiO2 in the thin films. The anode current density (photocurrent density) and the first order reaction speed constant (k) of thin films doped with 0.2% Sb reached 42.49 1A/cm2 and 0.171 h/cm2 under 254 nm UV illumination, respectively, which is about 11 times and 2 times that of the non-doped TiO2 anode prepared by the same method respectively.  相似文献   

20.
Molybdenum oxide thin films were prepared electrochemically onto the selenium predeposited tin oxide-coated glass substrates using 0.22 M sodium citrate (C6H5Na3O7) solution (pH 8.3) and sodium molybdate as a precursor. Cyclic voltammetry was used to determine the deposition potential effects on molybdenum compound speciation, while quantitative thin film composition was obtained from X-ray photoelectron spectroscopy depth profiles. Thin molybdenum film growth and composition was potential dependant. Predominant molybdenum species was Mo(IV) at all deposition potentials and deposition times. Optical properties of the molybdenum oxide thin films were determined using UV–VIS spectroscopy. The absorption edge varied between 560 and 650 nm, whereas optical band gap values—between 1.79 and 2.19 eV—well within the limits for solar light-induced chemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号