首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
以双子表面活性剂丁烷-1,4(N-十四烷基-N,N-二甲基)溴化铵为表面修饰剂,石油醚/正丁醇为溶剂,抗坏血酸为还原剂,在不同温度条件下一步法分别得到油基-金纳米流体和水基-金纳米流体.对纳米流体中悬浮纳米金属颗粒的形貌、粒径、光谱性质等进行了表征.结果表明,p H=7~8的冰水浴条件下制得的纳米金颗粒具有亲油性,粒径均一且分散稳定性较好.采用紫外光谱法分别考察了极性有机溶剂和热作用对油基-金纳米流体稳定性的影响.结果表明,极性有机溶剂添加量超过30%(体积分数)时,对纳米流体稳定性的影响显著;随着热处理温度的升高,纳米流体中分散的纳米金颗粒的稳定时间逐渐缩短.  相似文献   

2.
以金刚烷胺为起始反应物,首先在过量甲酸存在下,与甲醛发生埃斯韦勒-克拉克甲基化反应合成了N,N-二甲基金刚烷叔胺,在此基础上通过N,N-二甲基金刚烷叔胺与氯乙酸钠、溴代正丁烷、溴代正辛烷、溴代十二烷、溴代十六烷等一系列季铵化试剂的季铵化反应,分别合成了N,N-二甲基金刚烷甜菜碱型表面活性剂及N-(1-金刚烷基)-N,N-二甲基正丁基溴化铵、N-(1-金刚烷基)-N,N-二甲基辛基溴化铵、N-(1-金刚烷基)-N,N-二甲基十二烷基溴化铵、N-(1-金刚烷基)-N,N-二甲基十六烷基溴化铵等金刚烷季铵盐阳离子型表面活性剂,产率分别为75%,75%,61%,44%,54%.采用元素分析,IR,1H NMR等分析手段对5种产物进行了结构鉴定,测试了各种金刚烷表面活性剂水溶液的表面张力.  相似文献   

3.
本文报道查耳酮用H2O2在手性表面活性剂N,N-二甲基-N-十二烷基麻黄素澳化铵(1a)及N,N-二甲基-N-十六烷基麻黄素溴化铵(1b)形成的手性胶柬水溶液中的不对称环氧化反应,得到相应的手性α,β-环氧酮,对映体过量为5~8%.  相似文献   

4.
胶束模似酶的研究1.手性胶束中酮的不对称还原   总被引:5,自引:0,他引:5  
在(+)和(-)-N-十六烷基-N,N-二甲基-α-苯乙铵溴化物(1a和1b)及N-十二烷基-N,N-二甲基麻黄素溴化铵(2)等表面活性剂形成的手性胶束溶液中,以NaBH~4还原潜手性的苯基烷基酮可诱导出不对称中心,生成旋光性的醇.e.e.%最大值可达8.6%.产物醇的构型取决于所 用胶束的构型,对只有一个手性中心的胶束1a和1b,.产物构型和胶束相反.手性胶束结构对产物的光学得率影响较大.  相似文献   

5.
本文研究了手性表面活性剂N,N-二甲基-N-十二烷基麻黄素溴化铵及N,N-二甲基-N-十六烷基麻黄素溴化铵所形成的手性胶束体系中,以六氢吡啶作为碱催化剂,硝基甲烷或硫酚对查耳酮类化合物的Michael加成反应.  相似文献   

6.
在( )和(-)-N-十六烷基—N,N-二甲基-α-苯乙铵溴化物(1a和1b)及N-十二烷基-N,N-二甲基麻黄素溴化铵(2)等表面活性剂形成的手性胶束溶液中,以NaBH_4还原潜手性的苯基烷基酮可诱导出不对称中心,生成旋光性的醇。e.e.%最大值可达8.6%。产物醇的构型取决于所用胶束的构型,对只有一个手性中心的胶束1a和1b,产物构型和胶束相反。手性胶束结构对产物的光学得率影响较大。  相似文献   

7.
不同类型表面活性剂对纳米SiO2流体粘度的影响   总被引:1,自引:0,他引:1  
系统地研究了不同类型的表面活性剂对低浓度纳米SiO2流体粘度的影响规律,并在此基础上深入探讨了不同碳链长度的阳离子和非离子表面活性剂对纳米SiO2流体粘度的影响。结果表明,阴离子表面活性剂十二烷基苯磺酸钠(SDBS)对纳米流体粘度的影响较小,其相对粘度值维持在1.23左右;而阳离子表面活性剂十四烷基三甲基溴化铵(TTAB)、十六烷基三甲基溴化铵(CTAB)、十八烷基三甲基溴化铵(OTAB)、十六烷基氯化吡啶(CPC)、非离子表面活性剂OP-8、OP-10和两性离子表面活性剂DXS14、DXS18对纳米流体粘度的变化影响较大,其最大相对粘度值分别能达到3.42、1.82和8.87。同时也发现,阳离子表面活性剂碳链越长,纳米流体最高粘度值越大,且纳米流体最高粘度所对应的表面活性剂浓度均在其临界胶束浓度值附近。  相似文献   

8.
合成了N-十二烷基-N-(2-羟乙基)-N,N-二甲基溴化铵、N-十四烷基-N-(2-羟乙基)-N,N-二甲基溴化铵和N-十六烷基-N-(2-羟乙基)-N,N-二甲基溴化铵等3个季铵盐阳离子表面活性剂. 研究了它们以及N-十六烷基-N,N,N-三甲基溴化铵(CTAB)与阴离子表面活性剂十二烷基硫酸钠(SDS)复配系统在313.15 K时的双水相行为. 复配系统在两个非常狭窄的区域能形成双水相, 两相区近似以等摩尔线为中心对称分布, 随着阳离子表面活性剂碳链长度的增长, 富含阳离子表面活性剂的双水相区向阴阳离子表面活性剂摩尔比减小的方向稍有移动.  相似文献   

9.
邹红丽  李伟善 《电化学》2013,(6):590-594
利用水热法合成出单分散的球形纳米Fe3O4,探讨含十二烷基三甲基溴化铵表面活性剂合成样品形貌和尺寸.测试表明Fe3O4纳米球呈现出优越的倍率性能和循环性能.  相似文献   

10.
用荧光光谱法在298K研究了Tris-HCl缓冲溶液(pH=7.1)中系列N-烷基-N,N-二(2-羟乙基)-N-甲基溴化铵(烷基链长为C12到C16)与牛血清白蛋白(BSA)的结合作用,考察了表面活性剂结构、BSA浓度对结合作用的影响,分别用Stern-Volmer方程、虚拟结合常数模型探讨了表面活性剂在浓度较低区域与BSA的作用机制.结果表明:三种季铵盐表面活性剂均对BSA内源荧光有猝灭作用,并导致其最大发射波长蓝移;表面活性剂的烷基链越长,Stern-Volmer猝灭常数和虚拟结合常数越大,表面活性剂与BSA的结合作用也越强.  相似文献   

11.
双子表面活性剂由于其特殊的两亲结构可以作为纳米金颗粒(AuNPs)的表面稳定剂,但双子表面活性剂结构中的连接基团对AuNPs的粒径大小及稳定性有显著影响。本文制备了16-n-16(n=2,3,4和6)型双子表面活性剂稳定的金纳米溶胶,考察了体系pH对AuNPs稳定性的影响,并测试了其对4-硝基苯酚加氢还原体系的催化效果。结果表明,16-4-16和16-3-16对AuNPs的稳定性效果较好,所制备的AuNPs中,16-3-16-AuNPs在不同pH的环境中稳定性最好,而16-4-16-AuNPs在4-硝基苯酚加氢还原反应中的催化活性最佳。  相似文献   

12.
Gold nanorods in aqueous solution are generally surrounded by surfactants or capping agents. This is crucial for anisotropic growth during synthesis and for their final stability in solution. When CTAB is used, a bilayer has been evidenced from analytical methods even though no direct morphological characterization of the precise thickness and compactness has been reported. The type of surfactant layer is also relevant to understand the marked difference in further self-assembling properties of gold nanorods as experienced using 16-EO(1)-16 gemini surfactant instead of CTAB. To obtain a direct measure of the thickness of the surfactant layer on gold nanorods synthesized by the seeded growth method, we coupled TEM, SAXS, and SANS experiments for the two different cases, CTAB and gemini 16-EO(1)-16. Despite the strong residual signal from micelles in excess, it can be concluded that the thickness is imposed by the chain length of the surfactant and corresponds to a bilayer with partial interdigitation.  相似文献   

13.
The comparative study on the thermo-physical properties of water-based ZnO nanofluids and Ag/ZnO hybrid nanofluids is reported in the present study. The outer surface of ZnO nanoparticles was modified with a thin coating of Ag nanoparticles by a wet chemical method for improved stability and heat transfer properties. The ZnO and Ag/ZnO nanofluids were prepared with varying volume concentration (??=?0.02–0.1%). The synthesized nanoparticles and nanofluids were characterized with different characterization methods viz., scanning electron microscopy, X-ray diffraction, dynamic light scattering, thermal conductivity measurement, and viscosity measurement. Results show that thermal conductivity of Ag/ZnO hybrid nanofluids is found to be significantly higher compared to ZnO nanofluids. The maximum thermal conductivity an enhancement for Ag/ZnO nanofluid (??=?0.1%) is found to 20% and 28% when it compared with ZnO nanofluid (??=?0.1%) and water, respectively.  相似文献   

14.
In order to improve the heat transfer process by using nanofluids, different nanoparticles and base fluids have been studied. In this work, stability and effect of aging and temperature on the thermal conductivity of CNTs-ethylene glycol (EG) nanofluids were investigated. Chemical functionalisation was used to oxidise the surface of CNTs. The functionalised CNTs were used to prepare the nanofluids by a two-step method. The stability of nanofluids was measured by UV-vis spectroscopy and the results showed that the nanofluids had a good stability over several days. Immediately after nanofluid preparation not too much increase was observed for thermal conductivity but the nanofluid aging had a great influence on the improvement of the thermal conductivity, as after 65 days, about 50% increase was observed. The increase has been attributed to forming an ordered nanolayer of EG molecules around the CNTs. Also no significant temperature dependence of thermal conductivity was observed up to 50°C possibly due to the lack of temperature dependence of CNTs Brownian motions.  相似文献   

15.
采用共沉淀法合成Fe3O4纳米粒子, 将含有硅氧烷基的离子型改性剂二甲基十八烷基氯化铵与Fe3O4纳米粒子进行接枝反应, 再用脂肪醇聚氧乙烯醚磺酸盐的长链阴离子交换Cl-, 在Fe3O4纳米粒子表面生成具有阴、 阳离子双电层结构的表面处理层, 得到无溶剂Fe3O4纳米流体. 研究结果表明, 在Fe3O4纳米粒子表面成功接枝了有机物长链, 改性的Fe3O4纳米粒子呈单分散分布, 其损耗剪切模量G″明显大于储能剪切模量G', 具有明显的流体行为, 在室温下即可流动.  相似文献   

16.
The effect of nanoparticle size (4~44 nm) on the thermal conductivities of heat transfer oils has been systematically examined using iron oxide nanoparticles. Such Fe(3)O(4) nanoparticles were synthesized by a simple one-pot pyrolysis method. The size (16~44 nm), shape and assembly patterns of monodisperse Fe(3)O(4) nanoparticles were modulated by only controlling the amount of Fe(acac)(3). After the as-prepared Fe(3)O(4) NPs were dispersed in heat transfer oils, the prepared magnetic nanofluids exhibit higher thermal conductivity than heat transfer oils, and the enhanced values increase with a decrease in particle size. In addition, the viscosities of all nanofliuids are remarkably lower than that of the base fluid, which has been found for the first time in the nanofluid field. The promising features offer potential application in thermal energy engineering.  相似文献   

17.
The heat transfer properties of synthetic oil (Therminol 66) used for high temperature applications was improved by introducing 15 nm silicon dioxide nanoparticles. Stable suspensions of inorganic nanoparticles in the non-polar fluid were prepared using a cationic surfactant (benzalkonium chloride). The effects of nanoparticle and surfactant concentrations on thermo-physical properties (viscosity, thermal conductivity and total heat absorption) of these nanofluids were investigated in a wide temperature range. The surfactant-to-nanoparticle (SN) ratio was optimized for higher thermal conductivity and lower viscosity, which are both critical for the efficiency of heat transfer. The rheological behavior of SiO(2)/TH66 nanofluids was correlated to average agglomerate sizes, which were shown to vary with SN ratio and temperature. The conditions of ultrasonic treatment were studied and the temporary decrease of agglomerate size from an equilibrium size (characteristic to SN ratio) was demonstrated. The heat transfer efficiencies were estimated for the formulated nanofluids for both turbulent and laminar flow regimes and were compared to the performance of the base fluid.  相似文献   

18.

Present experimental investigation incorporates characterization of Al nanopowder, synthesis of Al/water nanofluids, and effect of these nanofluids on thermal performance of compact heat exchanger. Al nanoparticles are characterized using TEM and XRD. Al/water nanofluid is prepared by dispersing metal basis aluminium nanoparticles of average 100 nm size into double distilled water at two different particle volume concentrations of 0.1 and 0.2%. The nanofluids are prepared by two-step method and cetyl trimethyl ammonium bromide surfactant is used to stabilize the nanofluid. Thermo-physical properties of nanofluids at two different concentrations and their variation with fluid temperature are measured experimentally. It is examined that thermal conductivity, viscosity, and density of the nanofluid increased with the increase of volume concentrations. Furthermore, by increasing the fluid temperature, thermal conductivity is intensified, while the viscosity and density are decreased. Heat transfer parameters are strong functions of these thermo-physical properties. Therefore, comprehensive findings on heat transfer coefficient, Nusselt number, colburn factor, friction factor, and effectiveness are determined experimentally for prepared nanofluids passing under laminar conditions through single-pass cross-flow compact heat exchanger attached with multi-louvered fins.

  相似文献   

19.
Ionic liquid-based stable nanofluids containing gold nanoparticles   总被引:1,自引:0,他引:1  
A one-phase and/or two-phase method were used to prepare the stable ionic liquid-based nanofluids containing same volume fraction but different sizes or surface states of gold nanoparticles (Au NPs) and their thermal conductivities were investigated in more detail. Five significant experiment parameters, i.e. temperature, dispersion condition, particle size and surface state, and viscosity of base liquid, were evaluated to supply experimental explanations for heat transport mechanisms. The conspicuously temperature-dependent and greatly enhanced thermal conductivity under high temperatures verify that Brownian motion should be one key effect factor in the heat transport processes of ionic liquid-based gold nanofluids. While the positive influences of proper aggregation and the optimized particle size on their thermal conductivity enhancements under some specific conditions demonstrate that clustering may be another critical effect factor in heat transport processes. Moreover, the remarkable difference of the thermal conductivity enhancements of the nanofluids containing Au NPs with different surface states could be attributed to the surface state which has a strong correlation with not only Brownian motion but also clustering. Whilst the close relationship between their thermal conductivity enhancements and the viscosity of base liquid further indicate Brownian motion must occupy the leading position among various influencing factors. Finally, a promisingly synergistic effect of Brownian motion and clustering based on experimental clues and theoretical analyses was first proposed, justifying different mechanisms are sure related. The results may shed lights on comprehensive understanding of heat transport mechanisms in nanofluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号