首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Copper sols are prepared via the reduction of copper ions with hydrazine borane in dilute aqueous solutions of mixtures of the PAA-Cu2+ complex and poly(ethylene glycols) of various molecular masses at PEG: PAA = 0.25 base-mol/base-mol and PAA: Cu2+ = 10 base-mol/mol in the pH range 4.0–7.0. The stability of sols against oxidation (dissolution) or aggregation (enlargement) of metal nanoparticles is much higher than that of sols prepared in the absence of PEG. With an increase in the initial pH or a decrease in the molecular mass of PEG, the formed copper nanoparticles are much larger (no less than 20 nm in diameter) than copper nanoparticles occurring in the sol prepared in a solution of the PAA double complex with Cu2+ ions and high-molecular-mass PEG at a low initial pH (3–10 nm in diameter). Copper nanoparticles in sols prepared in solutions of complexes based on the high-molecular-mass PEG do not aggregate during exposure, thereby indicating the high stability of polymer screens on their surfaces.  相似文献   

2.
PAA模板体系中CuS纳米棒的自组装合成   总被引:1,自引:0,他引:1  
合成不同相对分子质量的聚丙烯酸(PAA),并以之为模板,在稀溶液中利用离子的自组装合成CuS中空纳米棒,棒平均直径在60~70 nm之间。结果表明,PAA可很好地作为室温下合成CuS纳米棒的模板剂,体系的pH值、PAA浓度、PAA相对分子质量等条件对生成物的微观形态均有影响。  相似文献   

3.
Ferrofluids, which are stable dispersions of magnetic particles, behave as liquids that have strong magnetic properties. Nanoparticles of magnetite with a mean diameter of 10-15 nm, which are in the range of superparamagnetism, are usually prepared by the traditional method of co-precipitation from ferrous and ferric electrolyte solution. When diluted, the ferrofluid dispersions are not stable if anionic or cationic surfactants are used as the stabilizer. This work presents an efficient way to prepare a stable aqueous nanomagnetite dispersion. A stable ferrofluid containing Fe3O4 nanoparticles was synthesized via co-precipitation in the presence of poly(acrylic acid) oligomer. The mechanism, microstructure, and properties of the ferrofluid were investigated. The results indicate that the PAA oligomers promoted the nucleation and inhibited the growth of the magnetic iron oxide, and the average diameter of each individual Fe3O4 particle was smaller than 10 nm. In addition, the PAA oligomers provided both electrostatic and steric repulsion against particle aggregation, and the stability of dispersions could be controlled by adjusting the pH value of solution. A small amount of Fe2O3 was found in the nanoparticles but the superparamagnetic behavior of the nanoparticles was not affected.  相似文献   

4.
Titanium dioxide (TiO2)/polyacrylic acid (PAA) (TiO2/PAA) particles were formed by mixing PAA and an acidic solution of TiO2 nanoparticles in dimethylformamide (DMF) followed by heat treatment. TEM and particle analysis showed that the resulting particles had a narrow size distribution. The colloid was very stable and aggregation was not observed over a wide pH range (3–9) or at high salt concentration. The residual carboxylic acid of PAA could be modified via EDC/NHS activation to form an amide bond with a protein. An antibody was attached to the hybrid nanoparticle and specific binding to antigen was monitored by surface plasmon resonance. The results suggest that TiO2/PAA nanoparticles are candidates as the base component of a photocatalytic system with potential for substrate selectivity.  相似文献   

5.
Iron and silver nanoparticles were synthesized using a rapid, single step, and completely green biosynthetic method employing aqueous sorghum extracts as both the reducing and capping agent. Silver ions were rapidly reduced by the aqueous sorghum bran extracts, leading to the formation of highly crystalline silver nanoparticles with an average diameter of 10 nm. The diffraction peaks were indexed to the face-centered cubic (fcc) phase of silver. The absorption spectra of colloidal silver nanoparticles showed a surface plasmon resonance (SPR) peak centered at a wavelength of 390 nm. Amorphous iron nanoparticles with an average diameter of 50 nm were formed instantaneously under ambient conditions. The reactivity of iron nanoparticles was tested by the H(2)O(2)-catalyzed degradation of bromothymol blue as a model organic contaminant.  相似文献   

6.
Carbon-supported metallic iron nanoparticles with an average diameter of 2.3 nm were studied by in situ Mössbauer spectroscopy at temperatures down to 5K and with applied magnetic fields up to 4 T. Nitrogen chemisorption at 300, 600 and 700K on the iron particles was found only to affect the iron atoms in the surface layers, resulting in surface iron atoms bonded to nitrogen in a number of different types of environments.  相似文献   

7.
The precipitation of micro- and nanoparticles of calcium carbonate onto lignocellulosic microfibers was investigated at different microfiber concentrations with and without polyacrylic acid (PAA), i.e. a polymer commonly used to form polymer-induced liquid precursors of CaCO3. Concentrations of PAA, Ca(OH)2, CO2 and microfiber were varied in order to study the impact of reaction conditions on PCC formation in a batch reactor operated at ambient temperature. High resolution scanning electron micrographs of the samples show that both microfiber concentration and PAA dosage affected the nucleation and crystal growth of PCC filler on cellulosic fiber. Interestingly, at higher microfiber concentrations, larger amount of nano-sized spherical crystals were formed on the microfibers. A higher dosage of PAA, on the other hand, resulted in less nucleation on the microfiber, suggesting a preferential bulk nucleation mechanism. A higher concentration of PAA during the precipitation also led to the formation and stabilization of amorphous CaCO3, which was supported by SEM images and XRD analysis (lack of characteristic crystal structure).  相似文献   

8.
The molecular dynamics method, based on an empirical potential energy surface, was used to study the effect of catalyst particle size on the growth mechanism and structure of single-walled carbon nanotubes (SWNTs). The temperature for nanotube nucleation (800-1100 K), which occurs on the surface of the cluster, is similar to that used in catalyst chemical vapor deposition experiments, and the growth mechanism, which is described within the vapor-liquid-solid model, is the same for all cluster sizes studied here (iron clusters containing between 10 and 200 atoms were simulated). Large catalyst particles, which contain at least 20 iron atoms, nucleate SWNTs that have a far better tubular structure than SWNTs nucleated from smaller clusters. In addition, the SWNTs that grow from the larger clusters have diameters that are similar to the cluster diameter, whereas the smaller clusters, which have diameters less than 0.5 nm, nucleate nanotubes that are approximately 0.6-0.7 nm in diameter. This is in agreement with the experimental observations that SWNT diameters are similar to the catalyst particle diameter, and that the narrowest free-standing SWNT is 0.6-0.7 nm.  相似文献   

9.
A 2-D array of naked Ag nanoparticles has been synthesized through interfacial reduction of Ag(+) under hydrothermal conditions. The process bestows the synthesis, nucleation, growth and self-assembly of the nanoparticles in a simple one-pot reaction and makes use of no additive or capping agent. The resulting macroscopic liquid silver mirror is highly stable and composed of tightly packed naked Ag nanoparticles (17 (3) nm diameter, with interparticle gaps of 1.3 (1.0) nm) which can be easily transferred to a given substrate for application.  相似文献   

10.
The influence of solution pH (in the range 3–9) on mixed silica-alumina suspension in the absence and presence of polyacrylic acid (PAA) was studied. The composition of the adsorbent was SiO2 (97%) and Al2O3 (3%). The turbidimetry method was applied to record changes in the stability of the investigated systems as a function of time. It was shown that the suspension without the polymer is less stable at pH 3, whereas at pH 6 and 9, the systems were stable. PAA with molecular weights 100 000 and 240 000 at pH 3 (improvement of system stability conditions) and PAA 2 000 at pH 6 (deterioration of suspension stability) have a great effect on the silica-alumina suspension stability. The stabilization-flocculation properties of polyacrylic acid are a result of a specific conformation of its chains on the solid surface where it depends on the solution pH and the polymer molecular weight.  相似文献   

11.
Palladium-gold core-shell nanoparticles were synthesized in the aqueous domains of water in oil microemulsions by the sequential reduction of H2PdCl4 and HAuCl4. The nanoparticles were characterized by ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). The UV-vis spectra confirm the presence of palladium nanoparticles after reducing H2PdCl4. These particles have been used as seeds for the core-shell particles. UV-vis spectra show that, after reducing HAuCl4, the surface plasmon absorption of the nanoparticles is dominated by gold, revealing the encapsulation of the palladium seeds. These results agree with crystallographic analysis performed with high-resolution TEM pictures, as well as with selected area electron diffraction. The TEM pictures show the core-shell nanoparticles with an average diameter of 9.1 nm, as compared with 5 nm for the palladium seeds, in good agreement with the used Pd:Au molar ratio.  相似文献   

12.
We report an aqueous‐phase synthetic route to copper nanoparticles (CuNPs) using a copper–surfactant complex and tests of their catalytic efficiency for a simple nitrophenol reduction reaction under atmospheric conditions. Highly stable, water‐dispersed CuNPs were obtained with the aid of polyacrylic acid (PAA), but not with other dispersants like surfactants or polymethacrylic acid (PMAA). The diameter of the CuNPs could be controlled in the range of approximately 30–85 nm by modifying the ratio of the metal precursor to PAA. The catalytic reduction of p‐nitrophenol to p‐aminophenol takes place at the surface of CuNPs at room temperature and was accurately monitored by UV/Vis spectroscopy. The catalytic efficiency was found to be remarkably high for these PAA‐capped CuNPs, given the fact that at the same time PAA is efficiently preventing their oxidation as well. The activity was found to increase as the size of the CuNPs decreased. It can therefore be concluded that the synthesized CuNPs are catalytically highly efficient in spite of the presence of a protective PAA coating, which provides them with a long shelf life and thereby enhances the application potential of these CuNPs.  相似文献   

13.
The removal of manganese from groundwater, using water-soluble chelating polymers such as polyacrylic acid (PAA) in combination with ultrafiltration (UF), was investigated. The effects of the solution pH and polymer dosages on the manganese removal were evaluated, and the removal efficiency was modeled considering the relevant chemical equilibria. In the absence of polymer, manganese removal with UF membranes alone was negligible at acidic pH values, but the removal increased substantially when polyacrylic acid (PAA) was added to the feed solution. The increase can be attributed to the formation of Mn2+–PAA chelates which are rejected by the membranes. A mathematical model was developed to explain this phenomenon based on chemical equilibria, including complex formation and precipitation. The chelation number (i.e., the number of carboxyl groups in the PAA binding to a single metal ion) and the equilibrium constants for metal–PAA chelation reactions were obtained by fitting experimental data at acidic pH in single-divalent metal systems. The model was able to predict Mn removal in chelation/UF systems at various pH levels and polymer dosages, and to account for the competitive interactions of PAA with the target (Mn2+) and background species (Ca2+, Mg2+) in multi-component systems. The predicted Mn removal efficiency was most sensitive to the chelation number.  相似文献   

14.
Acetate-stabilized ruthenium nanoparticles were prepared by the NaBH4 reduction of the metal precursor salt at room temperature. Nanoparticles with a mean diameter of 2.20 nm and a standard deviation of 1.03 nm could be obtained under experimental conditions. The Ru nanoparticles so obtained could be easily extracted to a toluene solution of alkylamine, giving rise to alkylamine-stabilized Ru nanoparticles with a mean diameter of 2.96 nm and a standard deviation of 0.92 nm. The new found role of acetate stabilization was used to formulate a mechanism for the formation of metal (Pt, Ru) nanoparticles in ethylene glycol. In this mechanism metal nanoparticles are stabilized in ethylene glycol by adsorbed acetate ions, which are produced as a product of the OH- catalyzed reaction between the metal precursor salt and ethylene glycol.  相似文献   

15.
Stable bracelet-like magnetic nanorings, formed by Ag-Fe(3)O(4) nanoparticles with an average size around 40 nm, have been successfully prepared in large scale by means of reducing Ag(+) and Fe(3+) simultaneously under mild conditions. In the reaction, tiny grains of silver are used as seeds to prompt small Fe(3)O(4) nanoparticles to grow larger, which is essential to enhance the magnetic dipole-dipole interactions, while only superparamagnetic Fe(3)O(4) nanoparticles (about 10 nm in size) can be obtained in the absence of Ag seeds. The XRD, TEM, SAED and the EDS line scan data reveal that these nanoparticles are in the core-shell structure. These magnetic Ag-Fe(3)O(4) nanoparticles assembled into nanorings by magnetic dipole-dipole interactions with a diameter of 100-200 nm. The saturation magnetization of the nanorings is 39.5 emu g(-1) at room temperature. The MRI images indicate that these kind of nanorings have the potential application in diagnostics as a T(2) MRI contrast agent.  相似文献   

16.
The use of nanomaterials rationally engineered to treat cancer is a burgeoning field that has reported great medical achievements. Iron-based polymeric nano-formulations with precisely tuned physicochemical properties are an expanding and versatile therapeutic strategy for tumor treatment. Recently, a peculiar type of regulated necrosis named ferroptosis has gained increased attention as a target for cancer therapy. Here, we show for the first time that novel iron oxide nanoparticles coated with gallic acid and polyacrylic acid (IONP–GA/PAA) possess intrinsic cytotoxic activity on various cancer cell lines. Indeed, IONP–GA/PAA treatment efficiently induces ferroptosis in glioblastoma, neuroblastoma, and fibrosarcoma cells. IONP–GA/PAA-induced ferroptosis was blocked by the canonical ferroptosis inhibitors, including deferoxamine and ciclopirox olamine (iron chelators), and ferrostatin-1, the lipophilic radical trap. These ferroptosis inhibitors also prevented the lipid hydroperoxide generation promoted by the nanoparticles. Altogether, we report on novel ferroptosis-inducing iron encapsulated nanoparticles with potent anti-cancer properties, which has promising potential for further in vivo validation.  相似文献   

17.
Herein we report a facile surfactant-free two-step method to prepare hydroxypropyl methylcellulose/poly(acrylic acid) (HPMC/PAA) hybrid nanogels. The HPMC/poly(N,N′-methylenebisacrylamide) (PMBA) nanoparticles were firstly prepared by free radical polymerization of N,N′-methylenebisacrylamide (MBA) in HPMC aqueous solution. In the second step, HPMC/PAA nanogels were synthesized by polymerization using the as-prepared HPMC/PMBA nanoparticles as the seeds and acrylic acid (AA) and MBA as the monomer and cross-linker, respectively. Dynamic light scattering (DLS) experiments indicated the nanogels were monodispersed with the nanogel sizes ranging from 95 to 310 nm and the polydispersity index (PDI) values ranging from 0.043 to 0.122. Transmission electron microscope (TEM) experiments demonstrated that nanogels have a core/shell structure. Furthermore, the monodisperse nanogels have a good temperature and pH sensibility, and the nanogel diameter was decreased with increasing temperature while increased with rising pH. This method provides a new way of preparation of monodisperse polymer nanogels with a core/shell structure.  相似文献   

18.
Homogeneous spherical palladium (Pd) nanoparticles were synthesized by pulsed laser ablation of a solid Pd foil target submerged in deionized water, without the addition of any external chemical surfactant. The influence of laser wavelength (355, 532, and 1064 nm) and fluence (8.92, 12.74, and 19.90 J/cm2) on nucleation, growth, and aggregation of Pd nanoparticles were systematically studied. Microstructural and optical properties of the obtained nanoparticles were studied by field emission transmission electron microscopy (FETEM), energy dispersive X-ray spectroscopy, and UV–vis spectroscopy. FETEM micrographs indicate that the average nanocrystallite sizes are relatively low (3–6 nm) and homogeneous for the particles synthesized at the laser wavelengths of 355 and 532 nm. However, at a laser wavelength of 1064 nm, the average nanocrystallite size is relatively large and inhomogeneous in nature. Moreover, we observe that the mean diameter and production rate of particles increases with an increase in laser fluence. The selected area electron diffraction patterns obtained from isolated Pd nanoparticles show the characteristic diffused electron diffraction rings of polycrystalline materials with a face-centered cubic structure. Absorbance spectrum of the synthesized nanoparticle solution shows a broad absorption band, which corresponds to a typical inter-band transition of a metallic system, indicating the production of pure palladium nanoparticles. The present work provides new insights into the effect of laser wavelength and fluence on the control of size and aggregation of palladium nanoparticles in the liquid medium.  相似文献   

19.
Leaching of palladium species from Pd nanoparticles under C--C coupling conditions was observed for both Heck and Suzuki reactions by using a special membrane reactor. The membrane allows the passage of palladium atoms and ions, but not of species larger than 5 nm. Three possible mechanistic scenarios for palladium leaching were investigated with the aim of identifying the true catalytic species. Firstly, we examined whether or not palladium(0) atoms could leach from clusters under non-oxidising conditions. By using our membrane reactor, we proved that this indeed happens. We then investigated whether or not small palladium(0) clusters could in fact be the active catalytic species by analysing the reaction composition and the palladium species that diffused through the membrane. Neither TEM nor ICP analysis supported this scenario. Finally, we tested whether or not palladium(II) ions could be leached in the presence of PhI by oxidative addition and the formation of [Pd(II)ArI] complexes. Using mass spectrometry, UV-visible spectroscopy and 13C NMR spectroscopy, we observed and monitored the formation and diffusion of these complexes, which showed that the first and the third mechanistic scenarios were both possible, and were likely to occur simultaneously. Based on these findings, we maintain that palladium nanoparticles are not the true catalysts in C--C coupling reactions. Instead, catalysis is carried out by either palladium(0) atoms or palladium(II) ions that leach into solution.  相似文献   

20.
《Electrophoresis》2018,39(12):1429-1436
Separations of bare superparamagnetic magnetite nanoparticles (BSPMNPs, approx. 11 nm diameter) was performed using non‐complexing (nitrate) and complexing (chloride, citrate and phosphate) electrolyte ions with additions of tetramethylammonium hydroxide (TMAOH), which is commonly applied to control the synthesis of stable iron oxides. The use of TMAOH as a background electrolyte (BGE) additive for capillary electrophoresis (CE) separations provided for the first time electropherograms of BSPMNPs exhibiting symmetrical and highly reproducible peaks, free of spurious spikes characteristic of nanoparticle clusters. Consequently, accurate determination of the electrophoretic effective mobility of BSPMNPs was possible, yielding a value of −3.345E‐08 m2 V−1 s−1 (relative standard deviation (RSD) of 0.500%). The obtained mobilities of BSPMNPs in the presence of various electrolyte ions show that the degree of complexation with the surface of BSPMNPs follows the order chloride < citrate < phosphate, correlating with the stabilities of Fe(III) complexes with the respective anions. Finally, bare and carboxylated iron oxide nanoparticles were successfully separated in only 10 min using 10 mM Tris‐nitrate containing 20 mM of TMAOH as electrolyte. Our findings show that simple and rapid CE experiments are an excellent tool to characterise and monitor properties and interactions of iron oxide nanoparticles with other molecules for surface modification purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号