共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of high field tunnel electron injection on the electrical properties of Al - thin plasma nitrided SiO2 films - Si (p-type) structures are studied. Under high field injection, it has been observed that electron trapping, positive charge generation near the Si-SiO2 interface (slow states) and fast state generation at the Si-SiO2 interface have taken place. After high temperature N2 annealing, the nitridation induced electron trap density is considerably decreased. Furthermore, under high field injection the generation rate of both the slow states and the interface states and consequently, the degradation rate of the nitrided oxide films have been also decreased after annealing. 相似文献
2.
T. Mchedlidze T. Arguirov M. Kittler R. Roelver B. Berghoff M. Foerst B. Spangenberg 《Physica E: Low-dimensional Systems and Nanostructures》2007,38(1-2):152
Structural and optical properties of Si/SiO2 multi-quantum wells (MQW) were investigated by means of Raman scattering and photoluminescence (PL) spectroscopy. The MQW structures were fabricated on a quartz substrate by remote plasma enhanced chemical vapour deposition (RPECVD) of alternating amorphous Si and SiO2 layers. After layer deposition the samples were subjected to heat treatments, i.e. rapid thermal annealing (RTA) and furnace annealing. Distinct PL signatures of confined carriers evidenced formation of Si-nanocrystals (nc-Si) in annealed samples. Analyses of Raman spectra also show presence of nc-Si phase along with amorphous-Si (a-Si) phase in the samples. The strong influence of the annealing parameters on the formation of nc-Si phase suggests broad possibilities in engineering MQW with various optical properties. Interestingly, conversion of the a-Si phase to the nc-Si phase saturates after certain time of furnace annealing. On the other hand, thinner Si layers showed a disproportionately lower crystalline volume fraction. From the obtained results we could assume that an interface strain prevents full crystallization of the Si layers and that the strain is larger for thinner Si layers. The anomalous dependence of nc-Si Raman scattering peak position on deposited layer thickness observed in our experiments also supports the above assumption. 相似文献
3.
The one-dimensional (1D) photonic crystals (PhC) Si/SiO2, SiO2/Si and SiO2/air are studied to investigate the coexistence and interaction of polaritonic and structural gaps. Optical multilayer calculations as well as infrared reflectance measurements in the 2.7–12 μm range for relevant cases have been carried out. The samples were prepared by standard chemical vapor deposition (CVD) processes. Satisfactory agreement between experimental and calculated results was obtained without fitting. The calculated results verify the presence of a polaritonic gap for thicknesses much lower than the wavelength for the cases SiO2/Si and SiO2/air. Including also the case Si/SiO2, we find the polaritonic peak can be strengthened, unchanged, or extinguished by the interaction between structural and polaritonic effects. All these predictions have been experimentally verified. 相似文献
4.
In this work, anodic porous alumina thin films with pores in the nanometer range are grown on silicon by electrochemistry and are used as masking material for the nanopatterning of the silicon substrate. The pore diameter and density are controlled by the electrochemical process. Through the pores of the alumina film chemical oxidation of the silicon substrate is performed, leading to the formation of regular arrays of well-separated stoichiometric silicon dioxide nanodots on silicon, with a density following the alumina pores density and a diameter adjustable by adjusting the chemical oxidation time. The alumina film is dissolved chemically after the SiO2 nanodots growth, revealing the arrays of silicon dioxide dots on silicon. In a next step, the nanodots are also removed, leaving a nanopatterned bare silicon surface with regular arrays of nanopits at the footprint of each nanodot. This silicon surface structuring finds interesting applications in nanoelectronics. One such application is in silicon nanocrystals memories, where the structuring of the oxidized silicon surface leads to the growth of discrete silicon nanocrystals of uniform size. In this work, we examine the electrical quality of the Si/SiO2 interface of a nanostructured oxidized silicon surface fabricated as above and we find that it is appropriate for electronic applications (an interface trap density below 1–3×1010 eV−1 cm−2 is obtained, indicative of the high quality of the thermal silicon oxide). 相似文献
5.
A pulsed KrF excimer laser of irradiance of about 108 W/cm2 was utilized to synthesize Si nanocrystals on SiO2/Si substrates. The results were compared with that ones obtained by applying low bias voltage to Si(1 0 0) target in order to control the kinetic energy of plasma ions. Glancing incidence X-ray diffraction spectra indicate the presence of silicon crystalline phases, i.e. (1 1 1) and (2 2 0), on SiO2/Si substrates. The average Si nanocrystal size was estimated to be about 45 nm by using the Debye-Scherrer formula. Scanning electron microscopy and atomic force microscopy images showed the presence of nanoparticles of different size and shape. Their distribution exhibits a maximum concentration at 49 nm and a fraction of 14% at 15 nm. 相似文献
6.
T. Gebel L. Rebohle J. Sun W. Skorupa 《Physica E: Low-dimensional Systems and Nanostructures》2003,16(3-4):366
In this paper we explore the electroluminescence (EL) properties of thermally grown 350 nm thick SiO2 layers co-implanted with Si+ and C+ ions. The implanted fluences were chosen in such a way that peak concentrations of excess Si and C of 5–10 at% were achieved. The devices show a broad photoluminescence (PL) between 2.0 and 3.2 eV with a main peak around 2.7 eV. The broad EL spectra show additional peaks around 3.3 eV and between 2.1 and 2.5 eV which are decreased with increasing Si/C concentration. The shape of the EL spectra does not change with increasing injection currents which implies that various types of defects occur for the different concentrations. The device stability is improved in comparison to Ge or Sn implanted oxide layers. 相似文献
7.
Ge/SiO_2 and Si/SiO_2 films were deposited using the two-target alternation magnetron sputtering technique. The Au/Ge/SiO_2/p-Si and Au/Si/SiO_2/p-Si structures were fabricated and their electroluminescence (EL) characteristics were comparatively studied. Both Au/Ge/SiO_2/p-Si and Au/Si/SiO_2/p-Si structures have rectifying property. All the EL spectra from the two types of the structure have peak positions around 650-660 nm. The EL mechanisms of the structures are discussed. 相似文献
8.
Yong RenYong-Bin Chen Miao ZhangJiang Zhu Xing-Wang ZhangYou-Yuan Zhao Ming Lu 《Applied Surface Science》2011,257(22):9578-9582
A multilayered Si nanocrystal-doped SiO2/Si (or Si-nc:SiO2/Si) sample structure is studied to acquire strong photoluminescence (PL) emission of Si via modulating excess Si concentration. The Si-nc:SiO2 results from SiO thin film after thermal annealing. The total thickness of SiO layer remains 150 nm, and is partitioned equally into a number of sublayers (N = 3, 5, 10, or 30) by Si interlayers. For each N-layered sample, a maximal PL intensity of Si can be obtained via optimizing the thickness of Si interlayer (or dSi). This maximal PL intensity varies with N, but the ratio of Si to O is nearly a constant. The brightest sample is found to be that of N = 10 and dSi = 1 nm, whose PL intensity is ∼5 times that of N = 1 without additional Si doping, and ∼2.5 times that of Si-nc:SiO2 prepared by co-evaporating of SiO and Si at the same optimized ratio of Si to O. Discussions are made based on PL, TEM, EDX and reflectance measurements. 相似文献
9.
T.P. Smirnova L.V. Yakovkina V.V. Kaichev Song Jeong-Hwan 《Journal of Physics and Chemistry of Solids》2010,71(5):836-840
The physical and chemical properties of the HfO2/SiO2/Si stack have been analyzed using cross-section HR TEM, XPS, IR-spectroscopy and ellipsometry. HfO2 films were deposited by the MO CVD method using as precursors the tetrakis 2,2,6,6 tetramethyl-3,5 heptanedionate hafnium—Hf(dpm)4 and dicyclopentadienil-hafnium-bis-diethylamide—Сp2Hf(N(C2H5)2)2.The amorphous interface layer (IL) between HfO2 and silicon native oxide has been observed by the HRTEM method. The interface layer comprises hafnium silicate with a smooth varying of chemical composition through the IL thickness. The interface layer formation occurs both during HfO2 synthesis, and at the annealing of the HfO2/SiO2/Si stack. It was concluded from the XPS, and the IR-spectroscopy that the hafnium silicate formation occurs via a solid-state reaction at the HfO2/SiO2 interface, and its chemical structure depends on the thickness of the SiO2 underlayer. 相似文献
10.
Dense-packed CdSe nanoclusters synthesized by sequential ion implantation of Cd+ and Se+ in thermally grown SiO2 are subjected to high electric field strengths in a metal oxide semiconductor (MOS) structure. The nanocrystal-containing device shows efficient CdSe band-edge photoluminescence (PL) when excited by a cw-HeCd laser operating at a wavelength of 442 nm at room temperature. An effective PL quenching and enhancement has been observed. Depth-resolved μ-PL measurements reveal an exponential decrease, which is depth-correlated with a layer of nanoparticles near the surface, whereas the optical non-linearity of the PL increases in parallel. The PL spectra and particle size distribution suggest an energy transfer from the nanoscopic to adjacent large particles. It can be concluded from these results that charge injection into the near-surface region of the nanocluster/SiO2 system might be the reason for the asymmetric and hysteretic electro-optic response. 相似文献
11.
A low-temperature (700°C) plasma-enhanced nitridation process which improves the dielectric breakdown of thin silicon dioxide (SiO2) layers is presented. It uses a new, production compatible, parallel plate plasma reactor working at low RF frequencies. Nitrided oxides produce less charge trapping under high field stress, higher breakdown charge and a tighter distribution of breakdown fields than pure SiO2. More nitrogen is incorporated in films treated in a NH3 plasma than in a N2 plasma. However, the latter present better electrical properties. 相似文献
12.
Structure-related infrared optical properties of BaTiO3 thin films grown on Pt/Ti/SiO2/Si substrates
Z.G. Hu G.S. Wang Z.M. Huang J.H. Chu 《Journal of Physics and Chemistry of Solids》2003,64(12):2445-2450
BaTiO3 thin films with different thickness have been grown on Pt/Ti/SiO2/Si substrates by a modified sol-gel method. X-ray diffraction analyses show that the BaTiO3 thin films are polycrystalline. The crystalline quality of the films is improved with increasing thickness. The infrared optical properties of the BaTiO3 thin films have been investigated using an infrared spectroscopic ellipsometry in the wave number range of 800-4000 cm−1 (2.5-12.5 μm). By fitting the measured pseudodielectric functions with a three-phase model (Air/BaTiO3/Pt), and a derived classical dispersion relation for the thin films, the optical constants and thicknesses of the thin films have been simultaneously obtained. The refractive index of the BaTiO3 thin films increases and on the other hand, the extinction coefficient does not change with increasing thickness in the entirely measured wave number range. The dependence of the refractive index on the film thickness has been discussed in detail and was mainly due to both the crystalline quality of the films and packing density. Finally, the absorption coefficient was calculated in the infrared region for applications in the pyroelectric IR detectors. 相似文献
13.
TaN films were deposited by reactive DC magnetron sputtering onto Si and SiO2 with thicknesses of less than one monolayer up to 10 nm. After this, the samples were transferred into the analysis chamber without breaking the vacuum and analysed by means of X-ray photoelectron spectroscopy (XPS) and angular resolved XPS (ARXPS).XPS measurements as a sensitive method to characterise chemical states showed a silicon nitride formation at the interface at deposition on Si. On the SiO2 no reaction was found at the interface.Based on these observations layer models for quantification of ARXPS measurements by means of model calculations were derived, so it was possible to obtain information on the in-depth element distribution in a non-destructive manner. For comparison to the ARXPS investigations analyses of the inelastic background of the Ta4d peak are shown and discussed. 相似文献
14.
C. Gravalidis N. Hatziaras A. Laskarakis I. Tsiaoussis N. Frangis 《Applied Surface Science》2006,253(1):385-388
Silicon nanocrystals (nc-Si) have gained great interest due to their excellent optical and electronic properties and their applications in optoelectronics. The aim of this work is the study of growth mechanism of nc-Si into a-SiO2 matrix from SiO/SiO2 multilayer annealing, using non-destructive and destructive techniques. The multilayer were grown by e-beam evaporation from SiO and SiO2 materials and annealing at temperatures up to 1100 °C in N2 atmosphere. X-rays reflectivity (XRR) and high resolution transmission electron microscopy (HRTEM) were used for the structural characterization and spectroscopic ellipsometry in IR (FTIRSE) energy region for the study of the bonding structure. The ellipsometric results gave a clear evidence of the formation of an a-SiO2 matrix after the annealing process. The XRR data showed that the density is being increased in the range from 25 to 1100 °C. Finally, the HRTEM characterization proved the formation of nc-Si. Using the above results, we describe the growth mechanism of nc-Si into SiO2 matrix under N2 atmosphere. 相似文献
15.
在分子束外延(MBE)设备中,利用直接沉积C原子的方法在覆盖有SiO2的Si衬底(SiO2/Si)上生长石墨烯,并通过Raman光谱和近边X射线吸收精细结构谱等实验技术对不同衬底温度(500℃,600℃,700℃,900℃,1100℃,1200℃)生长的薄膜进行结构表征.实验结果表明,在衬底温度较低时生长的薄膜是无定形碳,在衬底温度高于700℃时薄膜具有石墨烯的特征,而且石墨烯的结晶质量随着衬底温度的升高而改善,但过高的衬底温度会使石墨烯质量降低.衬底温度为1100℃时结晶质量最好.衬底温度较低时C原子活性较低,难以形成有序的C-sp2六方环.而衬底温度过高时(1200℃),衬底表面部分SiO2分解,C原子与表面的Si原子或者O原子结合而阻止石墨烯的形成,并产生表面缺陷导致石墨烯结晶变差. 相似文献
16.
利用射频磁控溅射方法,在n+-Si衬底上淀积SiO2/Si/SiO2 sub>纳米双势垒单势阱结构,其中Si层厚度为2至4nm,间隔为0.2nm,邻近n+-S i衬底的SiO2层厚度固定为1.5nm,另一SiO2层厚度固定为3nm.为了 对比研究,还制备了Si层厚度为零的结构,即SiO2(4.5nm)/n+-Si 结构.在经过600℃氮气下退火30min,正面蒸上半透明Au膜,背面也蒸Au作欧姆接触后,所 有样品都在反向偏置(n+-Si的电压高于Au电极的电压)下发光,而在正向偏压 下不发光.在一定的反向偏置下,电流和电致发光强度都随Si层厚度的增加而同步振荡,位 相相同.所有样品的电致发光谱都可分解为相对高度不等的中心位于2.26eV(550nm)和1.85eV (670nm)两个高斯型发光峰.分析指出该结构电致发光的机制是:反向偏压下的强电场使Au/( SiO2/Si/SiO2)纳米双势垒/n+-Si结构发生了雪崩击穿 ,产生大量的电子-空穴对,它们在纳米SiO2层中的发光中心(缺陷或杂质)上复 合而发光.
关键词:
电致发光
纳米双势垒
高斯型发光峰
雪崩击穿 相似文献
17.
The structure of Au/Si/SiO2/p-Si has been fabricated using the magnetron sputtering technique. It has a very good rectifying behaviour. Visible electroluminescence (EL) has been observed from the Au/Si/SiO2/p-Si structure at a forward bias of 5V or larger. A broad band with one peak around 650-660 nm appears in all the EL spectra of the structure. The effects of the thickness of the Si layer in the Si/SiO2 films and of the input electrical power on EL spectra are studied systematically. 相似文献
18.
J.M. Cao 《Applied Surface Science》2006,253(5):2460-2464
Three-step raising temperature process was employed to fabricate carbon nanotubes by pyrolysis of ferrocene/melamine mixtures on silica and single crystalline silicon wafers respectively. Then the morphologies, structures and compositions of obtained carbon nanotubes are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscope (EDX) and electron energy-loss spectroscopy (EELS). TEM and SEM observation shows that on silica substrate, high-oriented carbon nanotube can grow compactly to form continuous film on both frontal and cross-section surfaces, but on silicon substrate, only can form on cross-section surface. These carbon nanotubes have much irregular cup-like structure, and with outer diameter varying from 25 nm to 35 nm. At the top end of carbon nanotube there is a catalyst particle. EDX analysis reveals that the particle are iron cluster, and EELS spectrum indicates that the nanotube is composed of pure carbon. Finally, the effect of substrate surface roughness on the growth behavior of carbon nanotubes has been discussed. 相似文献
19.
采用离子束溅射沉积技术和溶胶-凝胶技术在K9基片上镀制了厚度相近的SiO2单层介质膜,用表面热透镜技术对两类膜层分别进行了热吸收及实时动态热畸变实验测试,结合散射光阈值测试及实验前后膜层的显微观测,对相同基底、相同膜层材料而采用不同方法镀制的光学膜层,发现化学膜的强激光损伤阈值远高于相应物理膜;从热力学响应及膜层特性差异的角度揭示了化学膜层的强激光损伤阈值远高于相应物理膜层的微观机理,即物理膜具有高吸收下的致密膜层快传导的基底热冲击效应,而化学膜则有低吸收下的疏松空隙填充慢传导的延缓效应,大量的实验数据及现象都证实了这一结论.
关键词:
强激光辐照损伤
损伤形貌
热冲击
热吸收 相似文献
20.
Microstructure and magnetic properties of crystalline Ce1Y2Fe5O12 thin films prepared on GGG and on SiO2/Si substrates by pulsed laser deposition were studied. The results show that highly textured Ce1Y2Fe5O12 film with (4 4 4) preferred orientation prepared on GGG (1 1 1) shows strong paramagnetism superimposed by a weak ferromagnetism. However, polycrystalline Ce1Y2Fe5O12 thin films on SiO2/Si, which can only be obtained after post-annealing, show strong ferromagnetism with easy axis of magnetization lying in the plane of the film. With post-annealing temperature increasing, CeO2 segregates from Ce1Y2Fe5O12; then YIG continues to be decomposed, forming Fe2O3. Consequently, the saturation magnetization of Ce1Y2Fe5O12 films decreases first and then increases correspondingly, which indicates that the magnetic properties of Ce1Y2Fe5O12 films are mainly related to the microstructure. 相似文献