首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work describes the development and optimisation of a complete headspace-solid phase microextraction (HS-SPME) procedure for qualitative and quantitative analysis of the equilibrium headspace generated by a number of essential oils (EOs) with potential applications in active packaging, including basil (Ocinum basilicum), clove (Sygyzium aromaticum), rosemary (Rosmarinus officinalis), citronella (Melissa officinalis), and cinnamon (Cinnamonum zeylanicum). The method consists of a combination of fully exposed HS-SPME for qualitative analysis and diffusive HS-SPME for quantitative determination.First, complete optimisation of a fully exposed HS-SPME procedure was carried out by means of a combination of a Plackett-Burman screening experimental design and response surface modelling (RSM). The results were used to fully describe the atmosphere generated by the EOs and to select the most relevant compounds for further consideration.The fibres were then calibrated (i.e. the uptake rate was calculated) by exposing them to known concentrations of terpenes in closed extraction vials. With a sampling time of 30 min at 20 °C, uptake rates ranged from 2.2 to 3.3 pg (min ppbv)−1. Results were checked by sampling over extended periods of times, with the observed variation being less than 5%, despite a 10-fold increase in extraction time. The results were further validated by comparing the calculated diffusion coefficients with theoretical data. The ratios of experimental:theoretical values varied between 0.85 and 1.05. The sensitivity of the uptake rate to headspace concentration was also investigated; variation of less than 10% was observed despite changes in concentration of four orders of magnitude. The new diffusive sampling method proved to give robust determinations of all the test analytes (by contrast, HS-SPME failed for camphene, camphor and cinnamaldehyde), providing repetitivity and intermediate precision lower than 9% (the values for HS-SPME were 10 and 12%, respectively).  相似文献   

2.
A diffusive sampler for the determination of hydrogen sulphide (H2S) based on collection on a paper filter coated with silver nitrate followed by optical densitometric determination of the metal sulphide was developed. Laboratory tests were conducted in controlled atmosphere to evaluate linearity, uptake rate, face velocity effects, sample stability, influence of relative humidity and of interferents, precision and accuracy. The measured uptake rate for H2S was determined in experiments involving sampling at different concentration levels in comparison to a wet standard colorimetric technique. The precision of the measurements for co-located passive samplers was lower than 15%. The accuracy of the data collected is within 20% of the actual value measured by the wet method. The sampler is capable of reliable measurements of H2S at common levels of a polluted atmosphere in urban settings yielding average concentration levels over one month and beyond. Diffusive sampling can be adopted to analyse in detail the temporal and spatial trends of H2S concentration in ambient air and in specific historic buildings or in museums. Figure At the end of sampling cap #2 is removed and optical density is measured  相似文献   

3.
This work investigated the application of diffusive gradients in thin films technique (DGT) to uranium speciation measurements in natural water. Two binding phases were examined, a commercially available affinity membrane, Whatman DE 81 (DE 81), with amino binding functional groups and the conventionally used Chelex 100 beads imbedded polyacrylamide hydrogel (Chelex) with iminodiacetate functional groups. The DGT devices assembled with the binding phases of DE 81 (DE 81 DGT) and Chelex gel (Chelex DGT) were tested both in synthetic river water solutions and in local river water. DE 81 DGT and Chelex DGT measured 80% and 75% of the total uranium in synthetic river water solution, respectively, and measured 73% and 60% of the total uranium in St. Lawrence River, Canada, respectively. The binding properties of the DE 81 membrane and Chelex gel for uranium, and the diffusion of uranyl complexes in the polyacrylamide gel (PAM) were also studied.  相似文献   

4.
An automatic calibration apparatus for the dynamic generation of organic vapours was developed. The accurately controlled stream of nitrogen was drawn at a low flow-rate through a thermostated container filled with the standard substance, thus generating a continuous stream of saturated vapour of the compound. The compound holder vessel was thermostated at −16°C. A large stream of pure carrier gas was mixed with a low stream of substance in a mixing chamber for dilution. The fittings were manufactured from PTFE, and tubes were made of special PTFE with an inert inner surface to eliminate the wall adsorption and to decrease the cross-diffusion. Moisture interferences were reduced using a Nafion membrane filter. The vapour generator was validated by diffusive sampling and gas chromatographic methods. Standard mixtures have been prepared containing toluene at concentrations ranging from 3 to 3000 ppm. The combined uncertainty of preparative and analytical error components associated with the concentration of the analytes at the 95% confidence level typically ranges from 2 to 5% relative, depending upon the concentration. The measured and the calculated values were compared and good correlation (r2>0.99) was found.  相似文献   

5.
Summary A new, molecular diffusion-based, sampling device (Analyst 2) has been used for the determination of semi-volatile PAHs in air. It has been developed from a previous model (Analyst), which is suitable for volatile hydrocarbons. The new model is capable of collecting enough gaseous PAHs for GC-MS analysis of enriched samples after 2 months exposure to both urban and suburban air. The adsorbent material adopted for enriching PAHs from air (Carbopack C) gives good recoveries of analytes from naphthalene to chrysene when a single solvent extraction is run at ambient temperature. The results of an experiment for assessing the internal consistency of this device are presented here. Data collected indicate that the “uptake rate” is constant for a 6-month sampling period. Results are also presented and discussed for indoor and outdoor determination of volatile PAHs, collected at both urban and suburban sites over a 12-month period in 2-monthly steps.  相似文献   

6.
Commercially available Diphonix® resin (TrisKem International) was evaluated as a receiving phase for use with the diffusive gradients in thin-films (DGT) passive sampler for measuring uranium. This resin has a high partition coefficient for actinides and is used in the nuclear industry. Other resins used as receiving phases with DGT for measuring uranium have been prone to saturation and significant chemical interferences. The performance of the device was evaluated in the laboratory and in field trials. In laboratory experiments uptake of uranium (all 100% efficiency) by the resin was unaffected by varying pH (4–9), ionic strength (0.01–1.00 M, as NaNO3) and varying aqueous concentrations of Ca2+ (100–500 mg L−1) and HCO3 (100–500 mg L−1). Due to the high partition coefficient of Diphonex®, several elution techniques for uranium were evaluated. The optimal eluent mixture was 1 M NaOH/1 M H2O2, eluting 90% of the uranium from the resin. Uptake of uranium was linear (R2 = 0.99) over time (5 days) in laboratory experiments using artificial freshwater showing no saturation effects of the resin. In field deployments (River Lambourn, UK) the devices quantitatively accumulated uranium for up to 7 days. In both studies uptake of uranium matched that theoretically predicted for the DGT. Similar experiments in seawater did not follow the DGT theoretical uptake and the Diphonix® appeared to be capacity limited and also affected by matrix interferences. Isotopes of uranium (U235/U238) were measured in both environments with a precision and accuracy of 1.6–2.2% and 1.2–1.4%, respectively. This initial study shows the potential of using Diphonix®-DGT for monitoring of uranium in the aquatic environment.  相似文献   

7.
Docekalová H  Divis P 《Talanta》2005,65(5):1174-1178
The diffusive gradient in thin films (DGT) technique was investigated and used to measure mercury concentration in river water. Mercury ions are covalently bound to amide nitrogen groups of commonly used polyacrylamide, which makes this gel unsuitable as a diffusive medium. In contrast, agarose gel was found as the diffusive gel for mercury measurements. Basic performance tests of agarose DGT verified the applicability of Fick's first law for DGT measurements. Two selective resins, Chelex-100 with iminodiacetic groups and Spheron-Thiol with thiol groups were used. The measured diffusion coefficient in agarose gel was close to that in water. The concentration of mercury in Svitava river measured by DGT with Speron-Thiol resin gel was higher (0.0116 ± 0.0009 μg l−1) than those obtained by Chelex-100 (0.0042 ± 0.0005 μg l−1). Different capture efficiencies of two adsorbents enable to estimate fractions of mercury bonded in different complexes in the river water. The concentrations of mercury found by DGT both Chelex-100 and Speron-Thiol resin gels are much lower than that measured directly in the river water (0.088 ± 0.012 μg l−1). This difference indicates that DGT concerns inorganic ions and labile species only, and that it is not able to include inert organic species and colloids.  相似文献   

8.
A novel binding phase was developed for use in diffusive gradients in thin-film (DGT) sampling for Cu(II) by employing methylthymol blue as a chelating and chromogenic agent. Methylthymol blue was adsorbed onto beads of Dowex 1 × 8 resin (200-400 mesh) and the resin beads were then immobilised onto an adhesive disc. Analysis of exposed binding discs by either UV-vis spectrophotometry or computer imaging densitometry provided robust quantification of adsorbed Cu(II) in the 0.2-1 μg cm−2 range, allowing detection at μg L−1 concentrations in the test solution (ca. 17 μg L−1 for a 24 h deployment), and in good agreement with established DGT theory. The method was shown to be a potential replacement for binding phases based on Chelex 100 where a colorimetric response to a specific metal is desired.  相似文献   

9.
Passive sampling relies on the uptake of contaminants into appropriate sampling devices along a diffusion gradient without using pumps or bailers. Thus, for example, in groundwater sampling, changes to flow due to pumping can be avoided. If the diffusion gradient can be maintained for extended periods, contaminants can be sampled continuously over time without any action, allowing to determine time-weighted average contaminant concentrations. We here show that the Ceramic Dosimeter, a solid receiving phase passive sampler using a ceramic membrane as sorbent container and diffusion barrier, can be used without calibration for the long-term monitoring of polycyclic aromatic hydrocarbons (PAHs) in groundwater.  相似文献   

10.
The diffusive gradients in thin films technique (DGT) was used to measure depth profiles of mercury in river and marine sediments in situ to a spatial resolution of 0.5 cm. Agarose gel was used as the diffusive gel in the DGT probes. Two different selective resins—Chelex 100 with iminodiacetic groups and Spheron-Thiol with thiol groups incorporated in the polyacrylamide resin gel—were tested. The different capture efficiencies of the two adsorbents enabled the fractions of mercury bound in different species in sediment pore water to be estimated. Mercury concentrations obtained by DGT with Spheron-Thiol resin were very similar to those obtained after centrifugation. This indicates that DGT with Sheron-Thiol resin reports on total dissolved mercury levels. The concentration of mercury measured by DGT with Chelex-100 resin was much lower (by a factor of 5–20) for the same sediment samples. Chelex-100 does not have such a high affinity to mercury as Spheron-Thiol, and so it only reports on the content of labile mercury species, such as inorganic ions and weak complexes. The content of labile mercury species in the river sediment was approximately 20% of the total dissolved mercury in pore water, whereas in marine sediment only 7% of the mercury was present as labile species.  相似文献   

11.
Positive matrix factorization (PMF) was used to deduce the aerosol sources at a rural site on the Mediterranean coast of Turkey, using sample collected between February 1992 and December 1993. Approximately 600 daily aerosol samples were collected and 40 elements and compounds were analyzed by atomic absorption spectrometry, instrumental neutron activation analysis, ion chromatography and colorimetry.Seven factors were identified with PMF, namely local dust, Saharan dust, sea salt, long range transport, smelter, arsenic and fertilizer factors. The non-parametric bootstrapped potential source contribution function (PSCF) was then used to help identify likely locations of the regional sources of pollution. Besides, explained variance, enrichment factors, seasonal variation of G-score values and back trajectories were used to define the source regions of the factors. Results demonstrated that there are major potential source areas, for the pollution-derived component in aerosol mass, on the Aegean coast, Northwest Turkey, Balkan countries, Ukraine and regions located northern part of Ukraine.  相似文献   

12.
An electric drill coupled with a solid-phase microextraction (SPME) polydimethylsiloxane (PDMS) fiber or a PDMS thin film was used for rapid sampling of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Laboratory experiments demonstrated that the sampling rates of SPME fiber and thin film can be predicted theoretically. Compared with the SPME fiber, the PDMS thin film active sampler exhibited a higher sampling rate and much better sensitivity due to its higher surface-to-volume ratio and its larger extraction phase volume. The amount of the analytes extracted by the thin film was around 100 times higher than those obtained by fiber, for both 5 min rapid sampling and equilibrium extraction. A new thin film active sampler was then developed for rapid on-site water sampling. The sampling kit included a portable electric drill, a copper mesh pocket, a piece of thin film, and a liner. Laboratory experiments indicated that the sampling remained in the linear uptake phase with this sampler to 8 min for the PAHs. Field test illustrated that this novel sampler was excellent for rapid on-site water sampling due to its short sampling period, high sampling efficiency and durability The thin film sampling kit facilitates on-site sampling, sample preparation, storage and transport. This new sampler is more user-friendly and easier to commercialize than previous samplers.  相似文献   

13.
A new diffusive gradients in a thin film (DGT) technique, using Microlite PrCH cation exchange resin, was developed and evaluated for measuring NH4–N in freshwaters. Microlite PrCH had high uptake (>92.5%) and elution efficiencies (87.2% using 2 mol L−1 NaCl). Mass vs. time validation experiments over 24 h demonstrated excellent linearity (R2 ≥ 0.996). PrCH-DGT binding layers had an extremely high intrinsic binding capacity for NH4–N (∼3000 μg). NH4–N uptake was quantitative over pH ranges 3.5–8.5 and ionic strength (up to 0.012 mol L−1 as NaCl) typical of freshwater systems. Several cations (Na+, K+, Ca2+ and Mg2+) were found to compete with NH4–N for uptake by PrCH-DGT, but NH4–N uptake was quantitative over concentration ranges typical of freshwater (up to 0.012 mol L−1 Na+, 0.006 mol L−1 K+, 0.003 mol L−1 Ca2+ and 0.004 mol L−1 Mg2+). Effective diffusion coefficients determined from mass vs. time experiments changed non-linearly with electrical conductivity. Field deployments of DGT samplers with varying diffusive layer thicknesses validated the use of the technique in situ, allowed deployment times to be manipulated with respect to NH4–N concentration, and enable the calculation of the diffusive boundary layer thickness. Daily grab sample NH4–N concentrations were observed to vary considerably independent of major rainfall events, but good agreements were obtained between PrCH-DGT values and mean grab sample measurements of NH4–N (CDGT:CSOLN 0.83–1.3). Reproducibility of DGT measurements in the field was good (relative standard deviation < 11%). Limit of detection was 0.63 μg L−1 (equivalent to 0.045 μmol L−1) based on 24 h deployments.  相似文献   

14.
Solid phase microextraction (SPME), a simple, fast and promising sampling technique, has been widely used for complex sample analysis. However, complex matrices could modify the absorption property of coatings as well as the uptake kinetics of analytes, eventually biasing the quantification results. In the current study, we demonstrated the feasibility of a developed calibration method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in complex milk samples. Effects of the complex matrices on the SPME sampling process and the sampling conditions were investigated. Results showed that short exposure time (pre-equilibrium SPME, PE-SPME) could increase the lifetime of coatings, and the complex matrices in milk samples could significantly influence the sampling kinetics of SPME. In addition, the optimized sampling time, temperature and dilution factor for PAHs were 10 min, 85 °C and 20, respectively. The obtained LODs and LOQs of all the PAHs were 0.1–0.8 ng/mL and 1.4–4.7 ng/mL, respectively. Furthermore, the accuracy of the proposed PE-SPME method for milk sampling was validated by the recoveries of the studied compounds in two concentration levels, which ranged from 75% to 110% for all the compounds. Finally, the proposed method was applied to the screening of PAHs in milk samples.  相似文献   

15.
Tseng WC  Sun YC  Lee CF  Chen BH  Yang MH  Huang YL 《Talanta》2005,66(3):740-745
A novel on-line microdialysis sampling coupled with flame atomic absorption spectrometry (FAAS) with an attractive application is reported. Microdialysates perfused through implanted microdialysis probes were directly introduced into the flame atomizer of a FAAS system using 0.2% HNO3 as carrier solution at a nebulizer uptake flow rate of 6 ml min−1. The interval for each determination was 90 s (60 s sampling time, 10 s read time and 20 s washing time). The analytical characteristics of the on-line microdialysis-FAAS system were validated as follows: linearity range, 0-300 mg l−1; detection limit (3σ, n = 7), 0.53 mg l−1; precision (R.S.D., n = 50), 4.1%. By comparing Mg levels in the blood of living rabbits with the results obtained from in vivo no net flux (NNF) method, the accuracy of the proposed on-line method was found to be good. The present method can be successfully applied to the in vivo monitoring of diffusible Mg in the blood of living rabbits after magnesium sulfate (MgSO4) administration with a temporal resolution of 1.5 min.  相似文献   

16.
A flat membrane in tandem with a helical sorbent trap has been used for continuous sampling of the volatile organic products generated in the thermal degradation process of the polyvinyl chloride (PVC) in air, followed by on-line gas chromatographic separation and mass spectrometric identification. The membrane and trap tandem makes automatic collection, concentration, and injection of PVC volatile and semivolatile degradation products, and it is simple in terms of instrumentation and operation. The poly(dimethylsiloxane) (PDMS) membrane used in this study shows a low permeation for oxygenated derivatives and a high permeation for volatile aromatic and non-aromatic hydrocarbon, and chlorinated hydrocarbons. Consequently, the final chromatogram is significantly simplified. By heating the trap at fixed intervals of time, consecutive gas chromatograms are obtained in the monitoring process. The sensitivity of the method depends on the parameters that affect the time of trapping, and the permeation through the membrane.  相似文献   

17.
A novel diffusive sampler that combines radial and axial diffusion has been developed that improves upon existing commercially available designs. The POcket Diffusive (POD) sampler has been validated under laboratory and field conditions for the measurements of VOCs in ambient air. Laboratory tests varied sampling conditions of temperature (−30–40 C), humidity (10–80%), wind velocity (0.1–4 m s−1), and concentration (0.5–50 μg m−3) for a number of specific VOCs. An overall uncertainty of circa 9% for the measurement of benzene is calculated for the validation tests, in compliance with the data quality objectives of the EU air quality directive 2008/50/EC. A semi-empirical diffusion model has been developed to estimate sampling rates for compounds that were not tested, and for conditions outside of tested ranges during validation. The diffusion model (and validation tests) shows a low influence of environmental conditions on the sampling rate for the POD sampler. Average reproducibility values of circa 3% are reported with overall sampling uncertainties ranging from 9% to 15%, for the whole range of tested conditions, depending on the compound. The adsorbent cartridge is compatible with existing thermal desorption systems in the market. The diffusive sampler can modify the sampling rate by changing the diffusive body within a range of different porosities. Field tests, conducted in parallel with independent quality controlled canister sampling, confirmed the ease of use and quality of VOC measurements with the POD sampler, for compounds that were, and were not, evaluated during laboratory tests.  相似文献   

18.
A non-destructive, rapid and simple to use sensing method for direct determination of glucose in non-processed fruits is described. The strategy involved on-line microdialysis sampling coupled with a continuous flow system with amperometric detection at an enzymatic biosensor. Apart from direct determination of glucose in fruit juices and blended fruits, this work describes for the first time the successful application of an enzymatic biosensor-based electrochemical approach to the non-invasive determination of glucose in raw fruits. The methodology correlates, through previous calibration set-up, the amperometric signal generated from glucose in non-processed fruits with its content in % (w/w). The comparison of the obtained results using the proposed approach in different fruits with those provided by other method involving the same commercial biosensor as amperometric detector in stirred solutions pointed out that there were no significant differences. Moreover, in comparison with other available methodologies, this microdialysis-coupled continuous flow system amperometric biosensor-based procedure features straightforward sample preparation, low cost, reduced assay time (sampling rate of 7 h−1) and ease of automation.  相似文献   

19.
Air monitoring networks are necessary to assess air quality in order to reduce pollution to levels which minimize harmful effects on human health and the environment. This paper describes a method to design or optimize air quality monitoring networks for nitrogen dioxide and ozone and its application in Malaga, a medium large city located in Andalusia, southern Spain, with traffic being the main source of air pollution. The completion of this method revealed that the old assessment network in Malaga was badly designed and made it possible to determine that one traffic-orientated and one background control station were necessary for NO2 assessment in Malaga, as well as two control stations for O3. First the number of stations necessary is obtained from historical data. Sampling campaigns with passive diffusion samplers at 74 sites were then carried out to obtain information on the pollution distribution in Malaga. The average concentrations found for NO2 and O3 were 22.8 μg/m3 and 64.3 μg/m3 respectively. Maximum values of up to 42.2 μg/m3 NO2 were found in Malaga city centre and O3 reached 91.5 μg/m3 downwind from the emission source. After spatial interpolation of the obtained values with Geographical Information Systems, a selection of the best locations for the monitoring stations was made, in line with the macro- and microscale siting requirements of the European Directive 2008/50/EC on ambient air quality and cleaner air for Europe.  相似文献   

20.
A gas chromatographic system was constructed to simultaneously measure ambient non-methane hydrocarbons (NMHCs) and halocarbons, which play significant roles in tropospheric ozone formation and stratospheric ozone loss, respectively. A heart-cut device based on a Deans switch was connected to two capillary columns to cover the full range of NMHCs and halocarbons. Analytes more volatile than C6 NMHCs and the halocarbon CFC-113 were separated with a PLOT column, while the remaining less volatile compounds were separated with a DB-1 column. Merge-and-split of the flows at the end of the two columns allowed the NMHCs and halocarbons to be observed simultaneously by electron capture detection (ECD) and flame ionization detection (FID). To avoid peak-overlap from the two columns while merging, programmed pressures were incorporated to control the Deans switch. In addition to the advantage of measuring two important classes of compounds in the atmosphere at the same time, this method has the additional benefit of using the homogeneity of atmospheric CFC-113 as an “intrinsic” internal reference. Thus, better data continuity, less consumption of gas standards, and real-time quality control can all be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号