首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A special quadratic optimization problem in complex variables is investigated for a closed-form solution. Two different approaches are used. The first is a direct approach which leads to a family of solutions defined in terms of arbitrary complex constants. The second is an indirect approach based on parametrizing the objective function. It leads to a specific solution, which is a member of the above family and which is shown to be bounded.  相似文献   

2.
In this paper, two PVD-type algorithms are proposed for solving inseparable linear constraint optimization. Instead of computing the residual gradient function, the new algorithm uses the reduced gradients to construct the PVD directions in parallel computation, which can greatly reduce the computation amount each iteration and is closer to practical applications for solve large-scale nonlinear programming. Moreover, based on an active set computed by the coordinate rotation at each iteration, a feasible descent direction can be easily obtained by the extended reduced gradient method. The direction is then used as the PVD direction and a new PVD algorithm is proposed for the general linearly constrained optimization. And the global convergence is also proved.  相似文献   

3.
本文针对非线性不等式约束优化问题,提出了一个新的可行序列等式约束二次规划算法.在每次迭代中,该算法只需求解三个相同规模且仅含等式约束的二次规划(必要时求解一个辅助的线性规划),因而其计算工作量较小.在一般的条件下,证明了算法具有全局收敛及超线性收敛性.数值实验表明算法是有效的.  相似文献   

4.
  总被引:1,自引:0,他引:1  
We present a new trust-region algorithm for solving nonlinear equality constrained optimization problems. Quadratic penalty functions are employed to obtain global convergence. At each iteration a local change of variables is performed to improve the ability of the algorithm to follow the constraint level set. Under certain assumptions we prove that this algorithm globally converges to a point satisfying the second-order necessary optimality conditions. Results of preliminary numerical experiments are reported.  相似文献   

5.
    
《Optimization》2012,61(5):1097-1106
We study the optimization problem (RQ) of minimizing the ratio of two quadratic functions over a possibly degenerate ellipsoid. The well definition of problem (RQ) is fully characterized. We show any well-defined (RQ) admits a semidefinite programming reformulation (SDP) without any assumption. Moreover, the minimum of (RQ) is attained if and only if (SDP) has a unique solution.  相似文献   

6.
In this paper we propose a recursive quadratic programming algorithm for nonlinear programming problems with inequality constraints that uses as merit function a differentiable exact penalty function. The algorithm incorporates an automatic adjustment rule for the selection of the penalty parameter and makes use of an Armijo-type line search procedure that avoids the need to evaluate second order derivatives of the problem functions. We prove that the algorithm possesses global and superlinear convergence properties. Numerical results are reported.  相似文献   

7.
An algorithm for nonlinear programming problems with equality constraints is presented which is globally and superlinearly convergent. The algorithm employs a recursive quadratic programming scheme to obtain a search direction and uses a differentiable exact augmented Lagrangian as line search function to determine the steplength along this direction. It incorporates an automatic adjustment rule for the selection of the penalty parameter and avoids the need to evaluate second-order derivatives of the problem functions. Some numerical results are reported.  相似文献   

8.
This paper describes a new technique for generating convex, strictly concave and indefinite (bilinear or not) quadratic programming problems. These problems have a number of properties that make them useful for test purposes. For example, strictly concave quadratic problems with their global maximum in the interior of the feasible domain and with an exponential number of local minima with distinct function values and indefinite and jointly constrained bilinear problems with nonextreme global minima, can be generated.Unlike most existing methods our construction technique does not require the solution of any subproblems or systems of equations. In addition, the authors know of no other technique for generating jointly constrained bilinear programming problems.Support of this work has been provided by the Instituto Nacional de Investigação Científica de Portugal (INIC) under contract 89/EXA/5 and by the Natural Sciences and Engineering Research Council of Canada operating grant 5671.Much of this paper was completed while this author was on a research sabbatical at the Universidade de Coimbra, Portugal.  相似文献   

9.
The simplex algorithm of Nelder and Mead is extended to handle nonlinear optimization problems with constraints. To prevent the simplex from collapsing into a subspace near the constraints, a delayed reflection is introduced for those points moving into the infeasible region. Numerical experience indicates that the proposed algorithm yields good results in the presence of both inequality and equality constraints, even when the constraint region is narrow. We note that it may be possible to modify and improve the algorithm by trying out variants.  相似文献   

10.
We present a modified quadratic penalty function method for equality constrained optimization problems. The pivotal feature of our algorithm is that at every iterate we invoke a special change of variables to improve the ability of the algorithm to follow the constraint level sets. This change of variables gives rise to a suitable block diagonal approximation to the Hessian which is then used to construct a quasi-Newton method. We show that the complete algorithm is globally convergent. Preliminary computational results are reported.  相似文献   

11.
By perturbing properly a linear program to a separable quadratic program, it is possible to solve the latter in its dual variable space by iterative techniques such as sparsity-preserving SOR (successive overrelaxation) algorithms. The main result of this paper gives an effective computational criterion to check whether the solutions of the perturbed quadratic programs provide the least-norm solution of the original linear program.This research was sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National Science Foundation, Grant Nos. DCR-84-20963 and DMS-82-109050, and by the Italian National Research Council (CNR).The author wishes to thank Professor O. L. Mangasarian for his helpful comments which helped to improve the paper.  相似文献   

12.
    
This paper deals with methods for choosing search directions in the iterative solution of constrained minimization problems. The popular technique of calculating orthogonal components of the search direction (i.e., tangential and normal to the constraints) is discussed and contrasted with the idea of constructing the search direction from two moves which are conjugate with respect to the Hessian of the Lagrangian function. Minimization algorithms which use search directions obtained by these two approaches are described, and their local convergence properties are studied. This analysis, coupled with some numerical results, suggests that the benefits of building steps from conjugate components are well deserving of further investigation.  相似文献   

13.
We introduce a new algorithm for the continuous bounded quadratic knapsack problem. This algorithm is motivated by the geometry of the problem, is based on the iterative solution of a series of simple projection problems, and is easy to understand and implement. In practice, the method compares favorably to other well-known algorithms (some of which have superior worst-case complexity) on problem sizes up ton = 4000.  相似文献   

14.
A slack-based feasible interior point method is described which can be derived as a modification of infeasible methods. The modification is minor for most line search methods, but trust region methods require special attention. It is shown how the Cauchy point, which is often computed in trust region methods, must be modified so that the feasible method is effective for problems containing both equality and inequality constraints. The relationship between slack-based methods and traditional feasible methods is discussed. Numerical results using the KNITRO package show the relative performance of feasible versus infeasible interior point methods.  相似文献   

15.
Parallel Variable Distribution for Constrained Optimization   总被引:1,自引:0,他引:1  
In the parallel variable distribution framework for solving optimization problems (PVD), the variables are distributed among parallel processors with each processor having the primary responsibility for updating its block of variables while allowing the remaining secondary variables to change in a restricted fashion along some easily computable directions. For constrained nonlinear programs convergence theory for PVD algorithms was previously available only for the case of convex feasible set. Additionally, one either had to assume that constraints are block-separable, or to use exact projected gradient directions for the change of secondary variables. In this paper, we propose two new variants of PVD for the constrained case. Without assuming convexity of constraints, but assuming block-separable structure, we show that PVD subproblems can be solved inexactly by solving their quadratic programming approximations. This extends PVD to nonconvex (separable) feasible sets, and provides a constructive practical way of solving the parallel subproblems. For inseparable constraints, but assuming convexity, we develop a PVD method based on suitable approximate projected gradient directions. The approximation criterion is based on a certain error bound result, and it is readily implementable. Using such approximate directions may be especially useful when the projection operation is computationally expensive.  相似文献   

16.
    
In an earlier paper [Minimizing a quadratic over a sphere, SIAM J. Optim., 12 (2001), 188-208], we presented the sequential subspace method (SSM) for minimizing a quadratic over a sphere. This method generates approximations to a minimizer by carrying out the minimization over a sequence of subspaces that are adjusted after each iterate is computed. We showed in this earlier paper that when the subspace contains a vector obtained by applying one step of Newton's method to the first-order optimality system, SSM is locally, quadratically convergent, even when the original problem is degenerate with multiple solutions and with a singular Jacobian in the optimality system. In this paper, we prove (nonlocal) convergence of SSM to a global minimizer whenever each SSM subspace contains the following three vectors: (i) the current iterate, (ii) the gradient of the cost function evaluated at the current iterate, and (iii) an eigenvector associated with the smallest eigenvalue of the cost function Hessian. For nondegenerate problems, the convergence rate is at least linear when vectors (i)-(iii) are included in the SSM subspace.

  相似文献   


17.
A new, robust recursive quadratic programming algorithm model based on a continuously differentiable merit function is introduced. The algorithm is globally and superlinearly convergent, uses automatic rules for choosing the penalty parameter, and can efficiently cope with the possible inconsistency of the quadratic search subproblem. The properties of the algorithm are studied under weak a priori assumptions; in particular, the superlinear convergence rate is established without requiring strict complementarity. The behavior of the algorithm is also investigated in the case where not all of the assumptions are met. The focus of the paper is on theoretical issues; nevertheless, the analysis carried out and the solutions proposed pave the way to new and more robust RQP codes than those presently available.  相似文献   

18.
不等式约束优化一个新的SQP算法   总被引:5,自引:0,他引:5  
朱志斌  张可村 《计算数学》2004,26(4):413-426
本文提出了一个处理不等式约束优化问题的新的SQP算法.和传统的SQP算法相比,该算法每步只需求解一个仅含等式约束的子二次规划,从而减少了算法的计算工作量.在适当的条件下,证明算法是全局收敛的且具有超线性收敛速度.数值实验表明算法是有效的.  相似文献   

19.
    
In this paper, we propose a BFGS (Broyden–Fletcher–Goldfarb–Shanno)-SQP (sequential quadratic programming) method for nonlinear inequality constrained optimization. At each step, the method generates a direction by solving a quadratic programming subproblem. A good feature of this subproblem is that it is always consistent. Moreover, we propose a practical update formula for the quasi-Newton matrix. Under mild conditions, we prove the global and superlinear convergence of the method. We also present some numerical results.  相似文献   

20.
We consider the problem of minimizing a general quadratic function over a polytope in the n-dimensional space with integrality restrictions on all of the variables. (This class of problems contains, e.g., the quadratic 0-1 program as a special case.) A finite branch and bound algorithm is established, in which the branching procedure is the so-called integral rectangular partition, and the bound estimation is performed by solving a concave programming problem with a special structure. Three methods for solving this special concave program are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号