共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Berardi R Costantini A Muccioli L Orlandi S Zannoni C 《The Journal of chemical physics》2007,126(4):044905
The aggregation of liquid crystal nanodroplets from a homogeneous solution is an important but not well understood step in the preparation of various advanced photonic materials. Here, the authors performed molecular dynamics computer simulations of the formation of liquid crystalline nanodroplets, starting from an isotropic and uniform binary solution of spherical Lennard-Jones (solvent) and elongated ellipsoidal Gay-Berne (solute) rigid particles in low (<10%) concentration. They studied the dynamics of demixing and the mesogen ordering process and characterized the resulting nanodroplets assessing the effect of temperature, composition, and specific solute-solvent interaction on the morphology, structure, and anisotropy. They find that the specific solute-solvent interaction, composition, and temperature can be adjusted to tune the nanodroplet growth and size. 相似文献
3.
The structure of flexible polymers endgrafted in cylindrical pores of diameter D is studied as a function of chain length N and grafting density sigma, assuming good solvent conditions. A phenomenological scaling theory, describing the variation of the linear dimensions of the chains with sigma, is developed and tested by molecular dynamics simulations of a bead-spring model. Different regimes are identified, depending on the ratio of D to the size of a free polymer N(3/5). For D>N(3/5) a crossover occurs for sigma=sigma*=N(-6/5) from the "mushroom" behavior (R(gx)=R(gy)=R(gz)=N(35)) to the behavior of a flat brush (R(gz)=sigma(1/3)N,R(gx)=R(gy)=sigma(-1/12)N(1/2)), until at sigma**=(D/N)3 a crossover to a compressed state of the brush, [R(gz)=D,R(gx)=R(gy)=(N(3)D/4sigma)(1/8)相似文献
4.
The single component adsorption of alkanes in carbon slit pores was studied using configurational-biased grand canonical Monte Carlo simulations. Wide ranges of temperature, pressure, alkane chain length, and slit height were studied to evaluate their effects on adsorption. Adsorption isotherms and density and orientation profiles were calculated. The behavior of long alkanes at high temperatures was found to be similar to short alkanes at lower temperatures. This suggests that the isotherms may be related through the Polanyi potential theory. 相似文献
5.
Yu. D. Fomin 《Journal of computational chemistry》2013,34(30):2615-2624
It is well known that confining a liquid into a pore strongly alters the liquid behavior. Investigations of the effect of confinement are of great importance for many scientific and technological applications. Here, we present a study of the behavior of benzene confined in carbon slit pores. Two types of pores are considered–graphite and amorphous carbon ones. We show that the effect of different pore structure is of crucial importance for the benzene behavior. © 2013 Wiley Periodicals, Inc. 相似文献
6.
《Liquid crystals》2012,39(12):1843-1851
ABSTRACTIn this work, we present results from (isobaric–isothermal) Monte Carlo Simulation studies of liquid crystalline dimer systems confined in a slit pore. Liquid crystalline dimer systems of various spacer numbers have been considered. Surface-induced conformational and alignment properties of these systems at different pressures under homeotropic anchoring condition have been investigated. We have used easily manageable coarse grained force fields to model both monomer–monomer and monomer–substrate interaction potentials. According to the simulated result, the anchoring of dimers to the surface and orientation of mesogenic units with respect to the surface normal seem to depend on the spacer number for messogen attractive confinement. Dimers with lower spacer number are able be adsorbed to the surface and most of their mesogens are oriented along the surface normal even at lower pressure. Those with larger spacer number are distributed throughout the volume at lower pressure. In the case of mesogen repulsive confinement, most of the dimers are adsorbed to the surface and most mesogens are randomly oriented at low pressure. As the pressure gets higher, the adsorption and orientability increase depending on the type of confinement and spacer number. As a result, clear submolecular partitioning and smectic A like structure have been identified. 相似文献
7.
Hydrogen bonding in liquid alcohols: a computer simulation study 总被引:2,自引:0,他引:2
A series of molecular dynamics simulations has been performed to investigate hydrogen bonding in liquid alcohols. The systems considered have been methanol, ethanol, ethylene glycol and glycerol at 298 K. The hydrogen bonding statistics as well as the mean lifetime of the hydrogen bonds are analyzed. The results are compared with those corresponding to liquid water. 相似文献
8.
Bhatia SK Tran K Nguyen TX Nicholson D 《Langmuir : the ACS journal of surfaces and colloids》2004,20(22):9612-9620
We present new simulation results for the packing of single-center and three-center models of carbon dioxide at high pressure in carbon slit pores. The former shows a series of packing transitions that are well described by our density functional theory model developed earlier. In contrast, these transitions are absent for the three-center model. Analysis of the simulation results shows that alternations of flat-lying molecules and rotated molecules can occur as the pore width is increased. The presence or absence of quadrupoles has negligible effect on these high-density structures. 相似文献
9.
Using Grand Canonical Monte Carlo simulation, we have studied the effects of confinement on argon and methanol adsorption in graphitic cylindrical and slit pores. Linear chain, zigzag and incomplete helical packing are observed for argon adsorption in cylindrical pores. However, for methanol adsorption different features appear because the electrostatic interactions favour configurations that maximize the hydrogen bonding among methanol molecules. We have found zigzag chains with hydrogen-bonded structures for methanol adsorption in cylindrical and slit pores. To investigate how dense the adsorbed phase is and how many molecules could be packed per unit physical volume of the solid, we consider two different definitions of pore density; one based on the physical volume and the other on the accessible volume. That based on accessible volume gives a measure of the fluid density, while that based on the physical volume gives a measure of how much adsorbate can be stored per unit volume of the adsorbent. It is found that the adsorbate is denser in cylindrical pores, but that slit pores can pack more molecules per unit solid volume. We also discuss the effects on the isosteric heat of argon and methanol of pore size, pore geometry and loading. 相似文献
10.
An isobaric-isothermal Gibbs ensemble Monte Carlo simulation has been carried out to study the adsorption of a model surfactant/solvent mixture in slit nanopores. The adsorption isotherms, the density distributions, and the configuration snapshots were simulated to illustrate the adsorption and self-assembly behaviors of the surfactant in the confined pores. The adsorption isotherms are stepwise: a two-step curve for the smaller (30 A) pore and a three-step one for the larger (50 A) pore. The adsorption isotherms and the interfacial aggregate structure of the surfactants in the pores with various sizes show a qualitatively consistent performance with the previous experimental observation. The micelle size distributions of the adsorbed surfactant aggregates have been analyzed in order to understand the adsorption mechanism, which suggests that the step rise in the surfactant adsorption is associated with the considerable formation of the micelle aggregates in the confined pores. The effect of the interaction between the pore surface and the surfactant on the adsorption behavior has also been investigated. The simulation results indicate that a change in the interaction can modify the shape of adsorption isotherms. A nonlinear mathematical model was used to represent the multistep adsorption isotherms. A good agreement between the model fitting and the simulation data was obtained for both the amount of adsorption and the jump point concentration. 相似文献
11.
Bridge phases associated with a phase transition between two liquid phases occur when a two-component liquid mixture is confined between chemically patterned walls. In the bulk the liquid mixture with components A, B undergoes phase separation into an A-rich phase and a B-rich phase. The walls bear stripes attractive to A. In the bridge phase A-rich and B-rich regions alternate. Grand canonical Monte Carlo studies are performed with the alignment between stripes on opposite walls varied. Misalignment of the stripes places the nanoscopic liquid bridges under shear strain. The bridges exert a Hookean restoring force on the walls for small displacements from equilibrium. As the strain increases there are deviations from Hooke's law. Eventually there is an abrupt yielding of the bridges. Molecular dynamics simulations show the bridges form or disintegrate on time scales which are fast compared to wall motion and transport of molecules into or from the confined space. Some interesting possible applications of the phenomena are discussed. 相似文献
12.
The effects of surface dimensions and topology on the adsorption of water on a graphite surface at 298 K were investigated using the grand canonical Monte Carlo (GCMC) simulation. Regarding the surface topology, we specifically considered the functional group and its position on the surface. The hydroxyl group (OH) is used as a model for the functional group. For describing the interaction of water, we used the potential model proposed by Muller et al., and the simulated isotherms of water in slit pores are found to depend on the position and concentration of the functional group. The onset of adsorption shifts to lower pressure when the concentration of functional group increases or when the functional group is positioned at the center of the graphene surface. The configuration of a group of functional groups also affects the adsorption isotherm. In all cases investigated, we have found that the hysteresis loop always exists, and the loop size depends on the concentration of the functional group and its position. Finally, we tested the molecular model of water adsorption on a functional graphite pore against the experimental data of a commercial activated carbon. The agreement is found to be satisfactory when the model porous solid is composed of pores having width in the range between 10 and 20 A and functional groups positioned at the center of the graphitic wall. 相似文献
13.
The transport properties and solvation dynamics of model 1,3-dialkylimidazolium chloride melt at 425 K is studied using molecular-dynamics simulations. Long trajectories of a large system have been generated and quantities such as the self-diffusion coefficient of ions, shear viscosity, and ionic conductivity have been calculated. Interestingly, the diffusion of the heavier cation is found to be faster than the anion, in agreement with experiment. The interaction model is found to predict a higher viscosity and lower electrical conductivity compared to experimental estimates. Analysis of the latter calculations points to correlated ion motions in this melt. The solvation time correlation function for dipolar and ionic probes studied using equilibrium simulations exhibits three time components, which include an ultrafast (subpicosecond) part as well as one with a time constant of around 150 ps. The ultrafast solvent relaxation is ascribed to the rattling of anions in their cage, while the slow component could be related to the reorientation of the cations as well as to ion diffusion. 相似文献
14.
In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules. 相似文献
15.
Henchman RH 《The Journal of chemical physics》2007,126(6):064504
A method to calculate the free energy of water from computer simulation is presented. Based on cell theory, it approximates the potential energy surface sampled in the simulation by an anisotropic six-dimensional harmonic potential to model the three hindered translations and three hindered rotations of a single rigid water molecule. The potential is parametrized from the magnitude of the forces and torques measured in the simulation. The entropy of these six harmonic oscillators is calculated and summed with a conformational term to give the total entropy. Combining this with the simulation enthalpy yields the free energy. The six water models examined are TIP3P, SPC, TIP4P, SPC/E, TIP5P, and TIP4P-Ew. The results reproduce experiment well: free energies for all models are within 1.6 kJ mol(-1) and entropies are within 3.6 J K(-1) mol(-1). Approximately two-thirds of the entropy comes from translation, a third from rotation, and 5% from conformation. Vibrational frequencies match those in the experimental infrared spectrum and assist in their assignment. Intermolecular quantum effects are found to be small, with free energies for the classical oscillator lying 0.5-0.7 kJ mol(-1) higher than in the quantum case. Molecular displacements and vibrational and zero point energies are also calculated. Altogether, these results validate the harmonic oscillator as a quantitative model for the liquid state. 相似文献
16.
The partial phase behavior of a continuum molecular model for self-assembling semiflexible equilibrium polymers is studied via Monte Carlo and molecular dynamics simulation. We investigate the transfer from ordinary gas-liquid coexistence to the appearance of liquid crystallinity driven by excluded volume interaction between rodlike aggregates. The transfer between the two types of phase behavior is governed by a tunable anisotropic attractive interaction between monomer particles. The relation to dipolar fluid models, which are also known to form reversible chains, is discussed. 相似文献
17.
We report a molecular dynamics simulation study on an ensemble of rod-like particles, each composed of nine soft spheres held rigidly along a line. We have calculated translational mean square displacements and velocity autocorrelation functions in the fluid phases exhibited by the model, i.e., smectic A, nematic and isotropic. These quantities have then been used to compute diffusion coefficients. In addition, we have calculated viscosities in the nematic and isotropic phases. Despite its crude nature, the model is capable of providing a faithful reproduction of many features of the transport behavior observed in real liquid-crystalline materials. The simulation results have been compared with the predictions of the modified affine transformation theory, finding only a fair agreement. 相似文献
18.
GY Gor CJ Rasmussen AV Neimark 《Langmuir : the ACS journal of surfaces and colloids》2012,28(33):12100-12107
The mechanisms of hysteretic phase transformations in fluids confined to porous bodies depend on the size and shape of pores, as well as their connectivity. We present a Monte Carlo simulation study of capillary condensation and evaporation cycles in the course of Lennard-Jones fluid adsorption in the system of overlapping spherical pores. This model system mimics pore shape and connectivity in some mesoporous materials obtained by templating cubic surfactant mesophases or colloidal crystals. We show different mechanisms of capillary hysteresis depending on the size of the window between the pores. For the system with a small window, the hysteresis cycle is similar to that in a single spherical pore: capillary condensation takes place upon achieving the limit of stability of adsorption film and evaporation is triggered by cavitation. When the window is large enough, the capillary condensation shifts to a pressure higher than that of the isolated pore, and the possibility for the equilibrium mechanism of desorption is revealed. These finding may have important implications for practical problems of assessment of the pore size distributions in mesoporous materials with cagelike pore networks. 相似文献
19.
Berardi R Micheletti D Muccioli L Ricci M Zannoni C 《The Journal of chemical physics》2004,121(18):9123-9130
We present a simple molecular level model based on Gay-Berne monomers linked by finitely extendable nonlinear elastic potential bonds for describing main chain polymerization in liquid crystals. We apply the model to study the influence that the order of the medium has on the characteristics of the chains obtained. We find that the chains prepared from the nematic are actually straighter than those obtained from a polymerization in the isotropic phase and that they are characterized by a small number of hairpins as experimentally observed. 相似文献
20.
A wide range of NPT simulations of a bead necklace liquid crystal model in the crystal B, smectic B, smectic A, and nematic phases have been performed. Systems with up to 21 600 molecules have been studied to observe the behavior of slowly decaying spatial correlation functions. The pair correlation function and its in-plane restriction are consistent with a crystalline phase made of independent two-dimensional crystalline layers. Smectic B phase is studied by the bond orientational pair correlation functions g(6) and its extension g(6ext). The first reaches a constant value, which seems to rule out a classical hexatic phase. The latter shows a power-law decay within the layers: its typical decay exponent (eta(6ext)) is evaluated. Relationships between multiple harmonics of the C(6n) order parameter have been evaluated through the whole range of existence of B phases (crystalline and smectic): the extension to the crystalline phase holds and provides an excellent fit of the simulation data. 相似文献