首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The layered double hydroxide of Mg with Al decomposes below 600 degrees C with the loss of nearly 48% mass, resulting in the formation of an oxide residue having the rock salt structure and nanoparticulate morphology. However, this product reconstructs back into the parent LDH, owing to its compositional and morphological metastability. The oxide can be kinetically stabilized within an amorphous phosphate network built up through an ex situ reaction with a suitable phosphate source such as (NH4)H2PO4. This oxide transforms into a thermodynamically more stable phase with a spinel structure on soaking in an aqueous medium. The oxide residue has a nanoparticulate morphology as revealed by the Scherrer broadening of the Bragg reflections as well as by electron microscopy. This work shows that the hydroxide reconstruction reaction and spinel formation are competing reactions. Suppression of the former catalyzes spinel formation as the excess free energy of the metastable oxide residue is unlocked to promote the diffusion of Mg2+ ions from octahedral to tetrahedral sites, which is the essential precondition to the formation of a normal spinel. This reaction taking place as it does at ambient temperature and in solution helps in the retention of a nanostructured morphology for the spinel. Another way of stabilizing the oxide is by incorporating the thermally stable borate anion into the LDH. This paves the way for an in situ reaction between the cations of the host LDH and the borate guest. The in situ reaction directly leads to the formation of an oxide with a spinel structure.  相似文献   

2.
The layered double hydroxides (LDHs) of Co with trivalent cations decompose irreversibly to yield oxides with the spinel structure. Spinel formation is aided by the oxidation of Co(II) to Co(III) in the ambient atmosphere. When the decomposition is carried out under N2, the oxidation of Co(II) is suppressed, and the resulting oxide has the rock salt structure. Thus, the Co-Al-CO(3)(2-)/Cl- LDHs yield oxides of the type Co(1-x)Al(2x/3) square(x/3)O, which are highly metastable, given the large defect concentration. This defect oxide rapidly reverts back to the original hydroxide on soaking in a Na2CO3 solution. Interlayer NO(3)- anions, on the other hand, decompose generating a highly oxidizing atmosphere, whereby the Co-Al-NO(3)- LDH decomposes to form the spinel phase even in a N2 atmosphere. The oxide with the defect rock salt structure formed by the thermal decomposition of the Co-Fe-CO(3)(2-) LDH under N2, on soaking in a Na(2)CO(3) solution, follows a different kinetic pathway and undergoes a solution transformation into the inverse spinel Co(Co,Fe)(2)O(4). Fe3+ has a low octahedral crystal field stabilization energy and therefore prefers the tetrahedral coordination offered by the structure of the inverse spinel rather than the octahedral coordination of the parent LDH. Similar considerations do not hold in the case of Ga- and In-containing LDHs, given the considerable barriers to the diffusion of M3+ (M=Ga, In) from octahedral to tetrahedral sites owing to their large size. Consequently, the In-containing oxide residue reverts back to the parent hydroxide, whereas this reconstruction is partial in the case of the Ga-containing oxide. These studies show that the reversible thermal behavior offers a competing kinetic pathway to spinel formation. Suppression of the latter induces the reversible behavior in an LDH that otherwise decomposes irreversibly to the spinel.  相似文献   

3.
水热条件对立方状Co3O4形貌的影响   总被引:4,自引:0,他引:4  
研究了原料浓度、溶液酸度、水热反应温度和时间以及陈化方式等条件对立方状Co3O4形貌和粒度的影响,采用XRD,TEM和IR等手段跟踪反应过程,并表征产物,对水热过程中的相转变和尖晶石相Co3O4的水热形成机理进行了初步探讨  相似文献   

4.
Cobalt oxide (Co3O4) and copper-doped cobalt oxide (CuxCo(3-x)O4) films have been prepared onto titanium support by the thermal decomposition method. The electrodes have been characterized by different techniques such as cyclic voltammetry, scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy (XPS). The effect on the electrochemical and crystallographic properties and surface morphology of the amount of copper in the oxide layer has been analyzed. The XPS spectra correspond to a characteristic monophasic Cu-Co spinel oxides when x is below 1. However, when the copper content exceeds that for the stoichiometric CuCo2O4 spinel, a new CuO phase segregates at the surface. The analysis of the surface cation distribution indicates that Cu(II) has preference for octahedral sites.  相似文献   

5.
Co-Mn-Al layered double hydroxides (LDHs) with various Co:Mn:Al molar ratios (4:2:0, 4:1.5:0.5, 4:1:1, 4:0.5:1.5, and 4:0:2) were prepared and characterized. Magnesium containing LDHs Co-Mg-Mn (2:2:2), Co-Mg-Mn-Al (2:2:1:1), and Co-Mg-Al (2:2:2) were also studied. Thermal decomposition of prepared LDHs and formation of related mixed oxides were studied using high-temperature X-ray powder diffraction and thermal analysis. The thermal decomposition of Mg-free LDHs starts by their partial dehydration accompanied by shrinkage of the lattice parameter c from ca. 0.76 to 0.66 nm. The dehydration temperature of the Co-Mn-Al LDHs decreases with increasing Mn content from 180 °C in Co-Al sample to 120 °C in sample with Co:Mn:Al molar ratio of 4:1.5:0.5. A subsequent step is a complete decomposition of the layered structure to nanocrystalline spinel, the complete dehydration, and finally decarbonation of the mixed oxide phase. Spinel-type oxides were the primary crystallization products. Mg-containing primary spinels had practically empty tetrahedral cationic sites. A dramatic increase of the spinel cell size upon heating and analysis by Raman spectroscopy revealed a segregation of Co-rich spinel in Co-Mn and Co-Mn-Al specimens. In calcination products obtained at 500 °C, the spinel mean coherence length was 5-10 nm, and the total content of the X-ray diffraction crystalline portion was 50-90%. These calcination products were tested as catalysts in the total oxidation of ethanol and decomposition of N2O. The catalytic activity in ethanol combustion was enhanced by increasing (Co+Mn) content while an optimum content of reducible components was necessary for high activity in N2O decomposition, where the highest conversions were found for calcined Co-Mn-Al sample with Co:Mn:Al molar ratio of 4:1:1.  相似文献   

6.
通过催化剂将CO转化为无毒气体仍然是目前减少CO污染的主要手段.随着纳米技术的快速发展,纳米催化剂因其在催化反应中呈现出的独特结构效应(如形貌效应、尺寸效应等)而受到人们的广泛关注.已有大量研究表明,纳米Co3O4作为一种非贵金属氧化物催化剂具有强烈的催化形貌效应,展现出优异的CO低温催化活性.因此,通过合理的设计来调控催化剂粒子的形貌,从而进一步改善催化剂的性能已成为近年来催化剂领域的重要研究方向.对于Co3O4纳米催化剂的可控制备,水热法具有反应温和、操作简便和产品形貌易控等特点.早期的研究主要围绕于Co3O4形貌的可控合成以及不同形貌Co3O4催化剂对其催化活性产生的影响,较少有对其形貌形成机制的报道.特别是在水热反应中,系统研究各反应参数对催化剂各异形貌的形成影响鲜有报道.
  本文在前人的研究基础上,重点研究了水热反应过程中各主要反应参数对产品形貌控制的影响,绘制了一副不同形貌Co3O4材料的合成过程图,并研究了Co3O4纳米催化剂催化CO氧化的形貌效应.通过水热法先成功合成了三种不同形貌(纳米棒、纳米片和纳米立方)的碱式碳酸钴纳米粒子,然后将其焙烧得到了Co3O4纳米粒子.采用扫描电子显微镜(SEM),透射电子显微镜(TEM), X射线粉末衍射仪(XRD),程序升温还原(H2-TPR和CO-TPR),氮气吸附-脱附比表面积测试(BET),氧气程序升温脱附(O2-TPD), X射线光电子能谱(XPS)等表征手段研究了不同反应参数对纳米碱式碳酸钴前驱体形貌形成的作用和各异形貌Co3O4纳米粒子在催化CO氧化反应中催化性能的差异及原因.
  结果表明, Co3O4较好地继承了碱式碳酸钴的形貌,在较低温度条件下(≤140°C),钴源(CoCl2或Co(NO3)2)是影响前驱体形貌的关键因素,反应时间只对粒子的尺寸产生较大影响.低温下, CoCl2作为钴源易诱导生产纳米棒状碱式碳酸钴,而Co(NO3)2则有利于纳米片状生成.当温度高于140°C后,无论何种钴源,最终均制得纳米立方体.表面活性剂CTAB对前驱体的均一性和粒子的分散性产生重要影响,加入CTAB后得到的产品尺寸更均一,形貌更加规整.对比于其他两种形貌的样品, Co3O4纳米片显示出更好的CO催化氧化活性.
   XPS结果表明,各形貌Co3O4纳米材料的表面组成存在明显差异,活性物种Co3+含量的不同是影响催化活性差异的重要原因. Co3O4纳米片具有更多的Co3+活性位,立方纳米Co3O4表面吸附氧含量较高, Co3O4纳米棒则暴露出相对更多的Co2+.因此,在三种形貌催化剂上CO氧化反应中, Co3O4纳米片表现出最优的催化活性,纳米立方次之,而纳米棒最差. H2-TPR, CO-TPR和O2-TPD等结果也表明, Co3O4纳米片拥有更强的还原性能和脱附氧能力,其次是纳米立方Co3O4.这与XPS结果一致,证实了不同形貌Co3O4纳米催化剂上暴露活性位的数量和表面氧物种的不同是造成彼此间催化CO氧化活性差异的重要原因.此外,通过稳定性测试发现Co3O4纳米片具有较高的催化稳定性,在水蒸气存在的情况下Co3O4纳米片逐渐失活,但随后在干燥条件下其催化活性又逐渐得到恢复.  相似文献   

7.
将低温水热反应和低温热处理相结合,制备了含还原氧化石墨烯(RGO)、碳纳米管(CNTs)和Co3O4的三元纳米复合材料RGO-CNTs-Co3O4;利用X射线衍射仪、扫描电子显微镜、透射电子显微镜分析了合成产物的相组成和微观结构,分析了其形成过程;并利用电化学测试装置测定了其作为锂离子电池负极材料的电化学性能.结果表明,在合成反应过程中,氧化石墨烯被还原剂肼还原为石墨烯,同时在石墨烯和CNTs表面生成氢氧化钴;再经低温热处理得到RGO-CNTs-Co3O4三元复合材料.Co3O4纳米颗粒均匀分散在由RGO片层和CNTs组成的三维网络结构中;这种三维网络结构既有利于电子和离子的传输,又能够有效抑制Co3O4在脱嵌锂过程中因体积变化引起的结构破坏.总体而言,合成的新型三元复合材料具有高的比容量以及良好的循环性能与倍率性能.  相似文献   

8.
Cobalt hydroxide nanoplatelets with a uniform hexagonal shape were prepared in high yield ( approximately 95%) by a facile hydrothermal route in the presence of poly(vinylpyrrolidone). This method provides a simple, low-cost, and large-scale route to produce beta-cobalt hydroxide nanoplatelets with an average diameter of 280 nm and a thickness of ca. 26 nm which show a predominant well-crystalline hexagonal brucite-like phase. Their thermal decomposition produced anisotropic nanoplatelets of cobalt oxides (CoO and Co3O4) under designed temperatures. The products were characterized by transmission electronic microscopy, selected-area electron diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetric, and thermogravimetric analysis. The magnetic properties of the products were investigated by a superconducting quantum interference device magnetometer. Co3O4 nanoplatelets exhibit a superparamagnetic behavior, and they might be a promising material to study the magnetic tunneling effect as anisotropic nanostructures.  相似文献   

9.
Two kinds of topochemical conversion routes from cobalt hydroxide precursors to cobalt oxide-based porous nanostructures are presented: pyrolysis in air and hydrothermal treatment by the Kirkendall diffusion effect. These cobalt hydroxide precursors were synthesized by a simple hydrothermal approach with sodium acetate as mineralizer at 200 °C. Detailed proof indicates that the process of cobalt hydroxide precursor growth is dominated by a nucleation, dissolution, renucleation, growth, and exfoliation mechanism. By the topochemical conversion processes several Co(3)O(4) nanostructures, such as cobalt oxide-coated cobalt hydroxide carbonate nanowires, cobalt oxide nanotubes, hollow cobalt oxide spheres, and porous cobalt oxide nanowires, have been synthesized. The obtained Co(3)O(4) nanostructures have also been evaluated as the anode materials in lithium-ion batteries. It was found that the as-prepared Co(3)O(4) nanostructures exhibited high reversible capacity and good cycle performance due to their porous structure and small size.  相似文献   

10.
The binary oxide composite, consisting of rock salt-type SrO and spinel Co3O4 nano-domains, exhibits soft ferromagnetic properties at ambient temperature. This ferromagnetism is originated from interface-induction, and the magnitude of the magnetic properties can be enhanced when the spinel phase of the composite is doped by a small amount of Ln2O3 (Ln = La, Nd, for instance). In this work, we study the composites of tri-oxide, 1/2(1-x)Ln2O3-xSrO/1/3Co3O4, where 0.01 < or =1-x < or = 0.6, by focusing on three areas: (i) generation of nano-composite dominant by interfacial phase via the pyrolysis of preceramic metallo-organic gel; (ii) influence of post-pyrolysis calcination and Ln2O3 content on the phase composition of the composite; and (iii) elucidation of different magnetic responses caused by the nature of Ln2O3 dissolved in the Co3O4 phase. The Ln(3+)-doped Co3O4 oxide displays only paramagnetic behavior at room temperature, but the ferromagnetic response is attained upon its mixing with SrO in nano-scale. The SrO phase plays the role in assisting Co3O4 phase with aligning unpaired electrons through interfacial induction.  相似文献   

11.
The phase transition process from VO(2) (B) to VO(2) (A) was first observed through a mild hydrothermal approach, using hybrid density functional theory (DFT) calculations and crystallographic VO(2) topology analysis. All theoretical analyses reveal that VO(2) (A) is a thermodynamically stable phase and has a lower formation energy compared with the metastable VO(2) (B). For the first time, X-ray absorption spectroscopy (XAS) of the V L-edge and O K-edge was performed on different VO(2) phases, and the differences in the electronic structure of the two polymorphic forms provide further experimental evidence of the more stable VO(2) (A). Consequently, transformation from VO(2) (B) to VO(2) (A) is much easier to be realized from a dynamical point of view. Notably, the transformation of VO(2) (B) into VO(2) (A) show the sequence VO(2) (B)-high-temperature VO(2) (A(H)) phase-low-temperature VO(2) (A) phase, which was achieved by hydrothermal treatment, respectively. Also, an alternative synthesis route was proposed based on the above hydrothermal transformation, and VO(2) (A) was successfully prepared via the simple one-step hydrothermal method by hydrolysis of VO(acac)(2) (acac = acetylacetonate). Therefore, VO(2) nanostructures with controlled phase compositions can be obtained in high yields. Through elucidating the structural evolution in the crystallographic shear mechanism, we can easily guide the design of other metal oxide nanostructures with controllable phases.  相似文献   

12.
The authors have studied the thermal decomposition of a turbostratic nickel hydroxide by means of DTA, TGA and isothermal analysis. The turbostratic compound has been described as a random stacking of parallel and equidistant nickel hydroxide layers with intercalary water layers.Well crystallized Ni(OH)2 has been used as reference. The preparation and the main properties of both hydroxides have been indicated. It was found that the removal of intercalary water takes place simultaneously with the removal of hydroxyl groups at a temperature, not very different from the dehydration temperature of Ni(OH)2. NO3? ions from the starting material and trapped water have been found on the dehydration product. The very fine nickel oxide shows a quite important increase of the lattice parameter (4.215 instead of 4.177 Å). A reversible variation of the inter-layer spacing from 8.5 to 7Å has been pointed out when the turbostratic hydroxide is heated up to 150°C.  相似文献   

13.
The direct decomposition of N2O was investigated over a series of magnesium cobaltite catalysts,MgxCo1-xCo2O4(0.0 ≤ x ≤ 1.0) ,which were prepared by the thermal decomposition of stoichiometric amounts of magnesium hydroxide and cobalt acetate. The thermal genesis of the different catalysts from their precursors was explored using thermogravimetric analysis,differential thermal analysis,and X-ray diffraction. Texture analysis was carried out using N2 adsorption at -196 °C. We found that all the catalysts tha...  相似文献   

14.
Thermomagnetic experiments are shown to be a useful and rapid technique for studying phase changes involving magnetic materials. Particular examples are chosen from Chromindur II (Fe28Cr10.5Co) alloys having different thermal histories. The Curie temperature of the single phase alloy is found to be ~650°C and the metastable spinodal decomposition boundary is at essentially the same temperature. The Cr-rich near equilibrium decomposition product is less magnetic and has a lower Tc, while the Cr-deficient product is more magnetic, with a Tc ? 720°C.Comparisons are made at different heating and cooling rates between temperatures measured using magnetic standards and those measured by a thermocouple in close proximity to the sample.  相似文献   

15.
So far,m any im portant sem iconductor m aterialssuch as ZnO,SnO2,Cu2O,In2O3have been synthesizedby using a variety of techniques including sol-gelm ethod[1],direct oxidation m ethod[2],m icrowave irradia-tion[3,4],sonochem ical m ethod[5],solution disper…  相似文献   

16.
Zou L  Xiang X  Wei M  Li F  Evans DG 《Inorganic chemistry》2008,47(4):1361-1369
The synthesis of single-crystalline ZnGa 2O 4 spinel phosphor with intense ultraviolet-emitting properties through a novel single-source inorganic precursor route is reported. This synthetic approach involves the calcination of a Zn-Ga layered double hydroxide precursor followed by selective leaching of the self-generated zinc oxide. Material characterization has been presented by chemical analysis, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, extended X-ray absorption fine structure analysis, UV-vis, and photoluminescence measurements. The results indicate that a single-crystalline ZnGa 2O 4 spinel with an average particle size of around 150 nm has been obtained at a lower calcination temperature and shorter calcination time compared with that with the high-temperature solid-state reaction method, based on the fact that the large amount of highly dispersed ZnO particles generated during the high-temperature calcination of the single-source inorganic precursor has a remarkable segregation and inhibition effect on the growth of ZnGa 2O 4 spinel. Furthermore, it has been confirmed that that Ga (3+) ions locate not only on the octahedral sites but also on the tetrahedral sites in the matrix of the ZnGa 2O 4 spinel structure, and the Ga-O coordination environment has a great influence on the photoluminescence of ZnGa 2O 4 phosphors.  相似文献   

17.
A catalyst composed of a Pd(5)Cu mixed oxide supported over Al(2)O(3)-CeO(2) with general formula Pd(5)CuO(x)/Al(2)O(3)-CeO(2) (Al/Ce atomic ratio=1/1) has been prepared by a wet impregnation method and tested in the methanol conversion. The structural and morphological characterization of the catalyst evidences that it is a mesoporous material thermally stable up to 873 K. At that temperature the specific surface area value is 170 m(2)/g, and a CeO(2) cubic phase is identified together with ill-defined diffraction peaks tentatively assigned to Cu-Pd clusters, suggesting that the active phase is well dispersed over the support. Infrared studies prove that methanol conversion takes place over the catalyst to a high extent yielding syngas as main product in the range 473-723 K and methane at higher temperatures. Oxygenated intermediates containing methoxy, carbonile or formiate species are not detected, which evidences that methanol conversion to methane very probably takes place according to a via-carbide mechanism.  相似文献   

18.
The novel oxide defect fluorite phase ScTiO(3.5) is formed during the topotactic oxidation of ScTiO(3) bixbyite. We report the oxidation pathway of ScTiO(3) and structure evolution of ScTiO(3.5), Sc(4)Ti(3)O(12), and related scandium-deficient phases as well as high-temperature phase transitions between room temperature and 1300 °Cusing in-situ X-ray diffraction. We provide the first detailed powder neutron diffraction study for ScTiO(3). ScTiO(3) crystallizes in the cubic bixbyite structure in space group Ia3 (206) with a = 9.7099(4) ?. The topotactic oxidation product ScTiO(3.5) crystallizes in an oxide defect fluorite structure in space group Fm3m (225) with a = 4.89199(5) ?. Thermogravimetric and differential thermal analysis experiments combined with in-situ X-ray powder diffraction studies illustrate a complex sequence of a topotactic oxidation pathway, phase segregation, and ion ordering at high temperatures. The optimized bulk synthesis for phase pure ScTiO(3.5) is presented. In contrast to the vanadium-based defect fluorite phases AVO(3.5+x) (A = Sc, In) the novel titanium analogue ScTiO(3.5) is stable over a wide temperature range. Above 950 °C ScTiO(3.5) undergoes decomposition with the final products being Sc(4)Ti(3)O(12) and TiO(2). Simultaneous Rietveld refinements against powder X-ray and neutron diffraction data showed that Sc(4)Ti(3)O(12) also exists in the defect fluorite structure in space group Fm3m (225) with a = 4.90077(4) ?. Sc(4)Ti(3)O(12) undergoes partial reduction in CO/Ar atmosphere to form Sc(4)Ti(3)O(11.69(2)).  相似文献   

19.
A hydrothermal reaction of Mn(OAc)(2)·4H(2)O, Co(OAc)(2)·4H(2)O and 1,2,4 benzenetricarboxylic acid at 220 °C for 24 h gives rise to a mixed metal MOF compound, [CoMn(2){C(6)H(3)(COO)(3)}(2)], I. The structure is formed by the connectivity between octahedral CoO(6) and trigonal prism MnO(6) units connected through their vertices forming a Kagome layer, which are pillared by the trimellitate. Magnetic susceptibility studies on the MOF compound indicate a canted anti-ferromagnetic behavior, due to the large antisymmetric DM interaction between the M(2+) ions (M = Mn, Co). Thermal decomposition studies indicate that the MOF compound forms a tetragonal mixed-metal spinel phase, CoMn(2)O(4), with particle sizes in the nano regime at 400 °C. The particle size of the CoMn(2)O(4) can be controlled by varying the decomposition temperature of the parent MOF compound. Magnetic studies of the CoMn(2)O(4) compound suggests that the coercivity and the ferrimagnetic ordering temperatures are dependent on the particle size.  相似文献   

20.
Co-Mg/Al类水滑石衍生复合氧化物上N2O催化分解的研究   总被引:3,自引:0,他引:3  
恒定二价与三价阳离子比为3((nCo+nMg)/nAl=3), 采用共沉淀法制备不同Co含量的系列类水滑石前驱物CoxMg3-xAl-HT(x=0, 0.5, 1, 1.5, 2, 2.5, 3), 经焙烧得到其衍生复合氧化物催化剂CoxMg3-xAlO. 采用XRD、BET、TG-DSC和TPR等表征手段考察了Co含量对材料前驱物及其衍生复合氧化物组成和结构等方面的影响, 研究了系列CoxMg3-xAlO催化剂的催化N2O分解性能; 同时探讨了反应条件, 如N2O浓度、空速、O2和H2O等因素对催化剂活性的影响. 结果表明, 所有前驱物材料均能形成完整的层状水滑石结构;经高温焙烧后形成了以Co-Al尖晶石为主相的复合氧化物, 且Co掺杂有助于尖晶石相的生成; Co含量对材料的热稳定性、比表面、可还原性和催化分解活性有显著的影响;含Co复合氧化物催化材料存在两个还原峰, 还原过程为Co3+→Co2+→Co;Mg有助于提高催化剂的热稳定性;随着Co含量增加, 催化剂比表面下降, 但比表面不是影响催化剂活性的主要因素; 500 ℃焙烧后的Co2.5Mg0.5AlO催化剂具有较好的N2O催化分解活性;提高前驱物的焙烧温度导致催化剂的活性下降;N2O浓度、空速及O2对催化剂活性的影响较小, 而H2O则对催化剂的活性有较大的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号