首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A numerical investigation of the mixed convection heat transfer from vertical helically coiled tubes in a cylindrical shell at various Reynolds and Rayleigh numbers, various coil‐to‐tube diameter ratios and non‐dimensional coil pitches was carried out. The particular difference in this study compared with other similar studies is the boundary conditions for the helical coil. Most studies focus on constant wall temperature or constant heat flux, whereas in this study it was a fluid‐to‐fluid heat exchanger. The purpose of this article is to assess the influence of the tube diameter, coil pitch and shell‐side mass flow rate on shell‐side heat transfer coefficient of the heat exchanger. Different characteristic lengths were used in the Nusselt number calculations to determine which length best fits the data and finally it has been shown that the normalized length of the shell‐side of the heat exchanger reasonably demonstrates the desired relation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
In the present study, the heat transfer coefficients of shell and helically coiled tube heat exchangers were investigated experimentally. Three heat exchangers with different coil pitches were selected as test section for both parallel-flow and counter-flow configurations. All the required parameters like inlet and outlet temperatures of tube-side and shell-side fluids, flow rate of fluids, etc. were measured using appropriate instruments. Totally, 75 test runs were performed from which the tube-side and shell-side heat transfer coefficients were calculated. Empirical correlations were proposed for shell-side and tube-side. The calculated heat transfer coefficients of tube-side were also compared to the existing correlations for other boundary conditions and a reasonable agreement was observed.  相似文献   

3.
Three-dimensional turbulent forced convective heat transfer and flow characteristics, and the non-dimensional entropy generation number in a helical coiled tube subjected to uniform wall temperature are simulated using the k–ε standard turbulence model. A finite volume method is employed to solve the governing equations. The effects of Reynolds number, curvature ratio, and coil pitch on the average friction factor and Nusselt number are discussed. The results presented in this paper cover a Reynolds number range of 2 × 104 to 6 × 104, a pitch range of 0.1–0.2 and a curvature ratio range of 0.1–0.3. The results show that the coil pitch, curvature ratio and Reynolds number have different effects on the average friction factor and Nusselt number at different cross-sections. In addition, the flow and heat transfer characteristics in a helical coiled tube with a larger curvature ratio for turbulent flow are different from that of smaller curvature ratio for laminar and turbulent flow in certain ways. Some new features that are not obtained in previous researches are revealed. Moreover, the effects of Reynolds number, curvature ratio, and coil pitch on the non-dimensional entropy generation number of turbulent forced convection in a helical coiled tube are also discussed.  相似文献   

4.
Absorber is an important component in vapor absorption refrigeration system and its performance has greater influence in overall efficiency of absorption machines. Falling film heat and mass transfer in an absorber is greatly influenced by fluid properties, geometry of heat exchanger and its operating parameters. This paper presents on the results of experimental studies on the heat and mass transfer characteristics of a coiled tube falling film absorber, using 1,1,1,2-Tetrafluroethane(R-134a) and N-N Dimethyl Acetamide (DMAC) as working fluids. The effects of film Reynolds number, inlet solution temperature and cooling water temperature on absorber heat load, over all heat transfer coefficient and mass of refrigerant absorbed are presented and discussed. Normalized solution and coolant temperature profiles and refrigerant mass absorbed along the height of absorber are also observed from the experimental results. The optimum over all heat transfer coefficient for R-134a–DMAC solution found to be 726 W/m2K for a film Reynolds number of 350. The R-134a vapour absorption rate is maximum in the normalized coil height of 0.6 to 1.  相似文献   

5.
In the present study, fully developed laminar flow and heat transfer in a helically coiled tube with uniform wall temperature have been investigated analytically. Expressions involving relevant variables for entropy generation rate contributed to heat transfer and friction loss, and total entropy generation rate have been derived. The effect of various flow and coil parameters like Reynolds number, curvature ratio, coil pitch, etc. on the entropy generation rate has been studied for two fluids- air and water. The results of the present study have been compared to the corresponding entropy generation values of straight pipe. Investigating the results, some optimum values for Reynolds number have been proposed and compared with the optimum Reynolds numbers of laminar flow inside a coiled tube subjected to constant heat flux boundary condition.  相似文献   

6.
An experimental study was carried out to investigate condensation heat transfer and pressure drop characteristics of R-134a in a coiled double tube oriented with its helix axis in the vertical direction. Measurements were obtained at inlet pressure of 815 kPa for refrigerant mass flux ranging from 95 to 710 kg/m2s and cooling water Reynolds number varying from 1000 to 14000. Presented results illustrate the effects of refrigerant mass flux and average condensation temperature difference on the condensation heat transfer coefficient and pressure drop. Comparison with relevant data from other sources indicates a reasonable agreement. An empirical correlation was obtained for predicting condensation heat transfer coefficient. The present study may be considered of a practical and theoretical interest for the design of the helical double-tube condensers using R-134a as the working fluid. M. El-Sayed Mosaad is on leave from Mechanical Engineering Department, Mansoura University, Egypt.  相似文献   

7.
Both of experimental and numerical investigations were performed to understand unsteady natural convection from outer surface of helical coils. Four helical coils with two different curvature ratios were used. Each coil was mounted in the shell both vertically and horizontally. The cold water was entered the coil and the hot water in the shell was cooling by unsteady natural convection. A CFD code was developed to simulate natural convection heat transfer. Equations of tube and shell are solved simultaneously. Statistical analyses have been done on data points of temperature and natural convection Nusselt number. It was revealed that shell-side fluid temperature and the Nusselt number of the outer surface of coils are functions of in-tube fluid mass flow rate, specific heat of fluids and geometrical parameters including length, inner diameter of the tube and the volume of the shell, and time.  相似文献   

8.
The reduction characteristic of turbulent drag and heat transfer of drag reduction surfactant solution flowing in a helically coiled pipe were experimentally investigated. The drag reduction surfactant used in the present study was the amine oxide type nonionic surfactant of oleyldihydroxyethylamineoxide (ODEAO, C22H45NO3=371). The zwitterion surfactant of cetyldimethylaminoaciticacidbetaine (CDMB, C20H41NO2=327) was added by 10% to the ODEAO solution in order to avoid the chemical degradation of ODEAO by ionic impurities in a test tape water. The experiments of flow drag and heat transfer reduction were carried out in the helically coiled pipe of coil to pipe diameter ratio of 37.5 and the helically coiled pipe length to pipe diameter of 1180.5 (pipe diameter of 14.4 mm) at various concentrations, temperatures and flow velocities of the ODEAO surfactant solution. The ODEAO solution showed a non-Newtonian behavior at high concentration of the ODEAO. From the experimental results, it was observed that the friction factor of the ODEAO surfactant solution flowing through the coiled pipe was decreased to a great extent in comparison with water as a Newtonian fluid in the turbulent flow region. Heat transfer measurements for water and the ODEAO solution were performed in both laminar and turbulent flow regions under the uniform heat flux boundary condition. The heat transfer coefficients for the ODEAO solution flow were the same as water flow in the laminar region. On the other hand, heat transfer reduction of the ODEAO solution flow was remarkedly reduced as compared with that of the water flow in the turbulent flow region.  相似文献   

9.
The condensation heat transfer of pure refrigerants, R-22, R-134a and a binary refrigerant R-410A flowing in small diameter tubes was investigated experimentally. The condenser is a countflow heat exchanger which refrigerant flows in the inner tube and cooling water flows in the annulus. The heat exchanger is smooth, horizontal copper tube of 1.77, 3.36 and 5.35 mm inner diameter, respectively. The length of heat exchanger is 1220, 2660 and 3620 mm, respectively. The experiments were conducted at mass flux of 200–400 kg/m2 s and saturation temperature of 40°C. The main results were summarized as follows: in case of single-phase flow, the single-phase Nusselt Number measured by experimental data was higher than that calculated by Gnielinski and Wu and Little correlation. The new single-phase correlation based on the experimental data was proposed in this study. In case of two-phase flow, the condensation heat transfer coefficient of R-410A for three tubes was slightly higher than that of R-22 and R-134a at the given mass flux. The condensation heat transfer coefficient of R-22 showed almost a similar value to that of R-134a. The condensation heat transfer coefficient for R-22, R-134a and R-410A increased with increasing mass flux and decreasing tube diameter. Most of the existing correlations which were proposed in the large diameter tube failed to predict condensation heat transfer. Therefore, the new condensation heat transfer correlation based on the experimental data was proposed in the present study.  相似文献   

10.
Steady state natural convection heat transfer from vertical helical coiled tubes, in glycerol-water solution 57% (g/w) by mass, is studied experimentally. Average heat transfer coefficients were obtained for laminar and transition to turbulent natural convection. The experiments have been carried out for three coil diameter to tube diameter ratios, D/do, and for five and ten coil turns, N. Effects of Rayleigh number, D/do ratios, and N on the heat transfer behavior of the coils are investigated. Correlations are presented to calculate the average Nusselt number in terms of Rayleigh number, D/do ratios, and N. The results show that the heat transfer coefficient is enhanced either by reducing the diameter ratio or the number of coil turns. The overall correlations covering all the data points using the coil length as a characteristic length are also presented.  相似文献   

11.
In the present study, sizing of a single pass cross flow heat exchanger with unmixed fluid streams has been investigated. The heat exchanger is a cross flow heat exchanger. It has overall dimensions of 20 × 20 × 20 cm. Two the most common heat exchanger design problems are the rating and sizing problem. Sizing problems deal with designing an exchanger and determining its physical size to meet the specified heat duty, pressure drops and other considerations. It means the determination of the exchanger construction type, flow arrangement, heat transfer surface geometries and materials, and the physical sizes of an exchanger to meet specified heat transfer and pressure drop. In this study, the physical size (length, width, height, mass flow rates of both fluids and surface areas on each side of the exchanger) are determined. Inputs to the sizing problem are surface geometries, fluid mass flow rates, inlet and outlet fluid temperatures and pressure drop on each side. Dimensions of L a , L b , and L c for the selected surfaces were investigated such that the design meets the heat duty and pressure drops on both sides exactly.  相似文献   

12.
An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and helically dimpled tube under turbulent flow with constant heat flux is presented in this work using CuO/water nanofluid as working fluid. The effects of the dimples and nanofluid on the Nusselt number and the friction factor are determined in a circular tube with a fully developed turbulent flow for the Reynolds number in the range between 2500 and 6000. The height of the dimple/protrusion was 0.6 mm. The effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region were investigated. The experiments were performed using helically dimpled tube with CuO/water nanofluid having 0.1%, 0.2% and 0.3% volume concentrations of nanoparticles as working fluid. The experimental results reveal that the use of nanofluids in a helically dimpled tube increases the heat transfer rate with negligible increase in friction factor compared to plain tube. The experimental results showed that the Nusselt number with dimpled tube and nanofluids under turbulent flow is about 19%, 27% and 39% (for 0.1%, 0.2% and 0.3% volume concentrations respectively) higher than the Nusselt number obtained with plain tube and water. The experimental results of isothermal pressure drop for turbulent flow showed that the dimpled tube friction factors were about 2-10% higher than the plain tube. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds number, pitch ratio and volume concentration fits with the experimental data within ±15%.  相似文献   

13.
An experimental study of a double-pipe helical heat exchanger was performed. Two heat exchanger sizes and both parallel flow and counterflow configurations were tested. Flow rates in the inner tube and in the annulus were varied and temperature data recorded. Overall heat transfer coefficients were calculated and heat transfer coefficients in the inner tube and the annulus were determined using Wilson plots. Nusselt numbers were calculated for the inner tube and the annulus. The inner Nusselt number was compared to the literature values. Though the boundary conditions were different, a reasonable comparison was found. The Nusselt number in the annulus was compared to the numerical data. The experimental data fit well with the numerical for the larger heat exchanger. But, there were some differences between the numerical and experimental data for the smaller coil; however these differences may have been due to the nature of the Wilson plots. Overall, for the most part the results confirmed the validation of previous numerical work.  相似文献   

14.
The flow boiling heat transfer coefficients of R-134a/R-290/R-600a (91%:4.068%:4.932% by mass) refrigerant mixture are experimentally arrived in two tubes of diameter 9.52 and 12.7 mm. The tests are conducted to target the varied heat flux condition and stratified flow pattern found in evaporators of refrigerators and deep freezers. The varied heat flux condition is imposed on the refrigerant using a coaxial counter-current heat exchanger test section. The experiments are performed for mass flow rates of the refrigerant mixture between 3 and 5 g s−1 and entry temperature between −8.59 and 5.33°C which are bubble temperatures corresponding to a pressure of 3.2 and 5 bar. The influences of heat flux, mass flow rate, pressure, flow pattern, tube diameter on the heat transfer coefficient are discussed. The profound effects of nucleate boiling prevailing even at higher vapor qualities in evaporators are highlighted. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a.  相似文献   

15.
An experimental investigation of flow boiling heat transfer in a commercially available microfin tube with 9.52 mm outer diameter has been carried out. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long and is electrically heated. The experiments have been performed at saturation temperatures between 0 and −20°C. The mass flux was varied between 25 and 150 kg/m2s, the heat flux from 15,000 W/m2 down to 1,000 W/m2. All measurements have been performed at constant inlet vapour quality ranging from 0.1 to 0.7. The measured heat transfer coefficients range from 1,300 to 15,700 W/m2K for R134a and from 912 to 11,451 W/m2K for R404A. The mean heat transfer coefficient of R134a is in average 1.5 times higher than for R404A. The mean heat transfer coefficient has been compared with the correlations by Koyama et al. and by Kandlikar. The deviations are within ±30% and ±15%, respectively. The influence of the mass flux on the heat transfer is most significant between 25 and 62.5 kg/m2s, where the flow pattern changes from stratified wavy flow to almost annular flow. This flow pattern transition is shifted to lower mass fluxes for the microfin tube compared to the smooth tube.  相似文献   

16.
The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime. The coiled wire has equilateral triangular cross section and was inserted separately from the tube wall. The experiments were carried out with three different pitch ratios (P/D = 1, 2 and 3) and two different ratio of equilateral triangle length side to tube diameter (a/D = 0.0714 and 0.0892) at a distance (s) of 1 mm from the tube wall in the range of Reynolds number from 3500 to 27,000. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The experimental results obtained from a smooth tube were compared with those from the studies in literature for validation of experimental set-up. The use of coiled wire inserts leads to a considerable increase in heat transfer and pressure drop over the smooth tube. The Nusselt number rises with the increase of Reynolds number and wire thickness and the decrease of pitch ratio. The highest overall enhancement efficiency of 36.5% is achieved for the wire with a/D = 0.0892 and P/D = 1 at Reynolds number of 3858. Consequently, the experimental results reveal that the best operating regime of all coiled wire inserts is detected at low Reynolds number, leading to more compact heat exchanger.  相似文献   

17.
A detailed experimental investigation is carried out to study the flow boiling heat transfer behavior of R-134a/R-290/R-600a (91%/4.068%/4.932% by mass) refrigerant mixture in smooth horizontal tubes of diameter 9.52 and 12.7 mm. The heat transfer coefficients of the mixture are experimentally measured under varied heat flux conditions for stratified flow patterns using a coaxial counter-current heat exchanger test section. The tests are conducted for refrigerant inlet temperatures between ?9 and 5 °C and mass flow rates ranging from 3 to 5 g s?1. Kattan–Thome–Favrat maps are used to confirm the flow patterns for the tested conditions. The magnitude of the heat transfer coefficient with respect to flow patterns and different mechanisms of boiling are discussed. The heat transfer coefficient of the refrigerant mixture is also compared with that of R-134a for selected working conditions. The significance of nucleate boiling in the overall heat transfer process under these testing conditions is highlighted.  相似文献   

18.
Since the heat transfer performance of syngas cooler affects the efficiency of the power generating system with integrated coal gasification combined cycle (IGCC) directly, it is important to obtain the heat transfer characteristics of high-pressure syngas in the cooler. Heat transfer in convection cooling section of pressurized coal gasifier with the membrane helical coils and membrane serpentine tubes under high pressure is experimentally investigated. High pressure single gas (He or N2) and their mixture (He + N2) gas serve as the test media in the test pressure range from 0.5 MPa to 3.0 MPa. The results show that the convection heat transfer coefficient of high pressure gas is influenced by the working pressure, gas composition and symmetry of flow around the coil, of which the working pressure is the most significant factor. The average convection heat transfer coefficients for various gases in heat exchangers are systematically analyzed, and the correlations between Nu and Re for two kinds of membrane heat exchangers are obtained. The heat transfer coefficient of heat exchanger with membrane helical coils is greater than that of the membrane serpentine-tube heat exchanger under the same conditions. The heat transfer coefficient increment of the membrane helical-coil heat exchanger is greater than that of the membrane serpentine-tube heat exchanger with the increase of gas pressure and velocity.  相似文献   

19.
In the present study, new experimental data are presented for literature on the prediction of film thickness and identification of flow regime during the co-current downward condensation in a vertical smooth copper tube having an inner diameter of 8.1 mm and a length of 500 mm. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Condensation experiments are done at mass fluxes of 300 and 515 kg m?2 s?1. The condensing temperatures are between 40 and 50 °C; heat fluxes are between 12.65 and 66.61 kW m?2. The average experimental heat transfer coefficient of the refrigerant HFC-134a is calculated by applying an energy balance based on the energy transferred from the test section. A mathematical model by Barnea et al. based on the momentum balance of liquid and vapor phases is used to determine the condensation film thickness of R134a. The comparative film thickness values are determined indirectly using relevant measured data together with various void fraction models and correlations reported in the open literature. The effects of heat flux, mass flux, and condensation temperature on the film thickness and condensation heat transfer coefficient are also discussed for the laminar and turbulent flow conditions. There is a good agreement between the film thickness results obtained from the theoretical model and those obtained from six of 35 void fraction models in the high mass flux region of R134a. In spite of their different valid conditions, six well-known flow regime maps from the literature are found to be predictive for the annular flow conditions in the test tube in spite of their different operating conditions.  相似文献   

20.
The graphical method to determine with the aid of a Mollier i - x diagram (psychrometric chart) combined heat and mass transfer is simulated by a computer program. Heat rejection rates from a plate-fin tube type condenser are determined for various flow rates and inlet state conditions of air and for different degrees of wetting of the heat transfer surfaces. The presence of water and the cooling by latent heat makes it possible to exchange more heat than the unwetted exchanger would even for idealized conditions of infinite heat transfer coefficient of the air. The evaporative cooled condenser also can exchange heat with ambient air which has much higher temperature than the condensing fluid. Evaporative cooling increases heat transfer by a factor of more than three for saturated inlet air and greater than five for lower inlet humidities. Wetted heat exchangers require less extended surfaces and can operate effectively with bare tubes only. Wetting the condenser of a refrigeration or heat pump system makes it possible to exchange the condenser load at lower temperatures. This yields an increase of COP of the order of 30 to 60% and therefore a substantial decrease in compressor power and its energy consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号