首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Samples of 1,4-bis(3,3,3-triphenylpropynyl)benzene 3 were prepared by Pd(0)-catalyzed coupling of 3,3,3-triphenylpropyne (1) and 1,4-diiodobenzene. The structure of compound 3 is such that the central phenylene can play the role of a gyroscope wheel, while the alkyne bond and trityl groups can act as an axle and shielding frameworks, respectively. Crystals grown from benzene and dichloromethane were characterized by X-ray diffraction, variable-temperature (13)C CPMAS NMR, quadrupolar echo solid-state (2)H NMR, and thermal analyses. The rotational dynamics of benzene molecules and phenylene groups were characterized in terms of 6-fold rotation and 2-fold flipping models, respectively. The possibility of a gearing mechanism between adjacent benzene molecules and phenylene groups suggested by the clathrate structure was investigated. However, it was found that 6-fold rotation of benzene molecules at 300 K occurs in the gigahertz regime (or higher) and 2-fold flipping of phenylene groups in the kilohertz range in a structure that can be described as a slipping-gear lattice. The rotational dynamics of the phenylene group in the solvent-free structure were remarkably similar to those in the clathrate, and both are among the fastest known for phenylene rotation in solids. The results presented here provide a valuable starting point for the design and analysis of crystalline solids with correlated molecular motions.  相似文献   

2.
We describe our efforts toward the preparation of materials built with molecules possessing topologies analogous to those of macroscopic compasses and gyroscopes. Samples of 1,4-bis(3,3,3-triphenylpropynyl)benzene (3) were prepared by a simple two-step procedure from triphenylmethyl chloride (1) and 1,4-diiodobenzene. The structure of compound 3 is such that the central phenylene can play the role of a gyroscope wheel while the two tritylpropynyl groups can act as an axle and shielding framework. Crystals of a benzene clathrate were characterized by single crystal X-ray diffraction and variable-temperature solid state NMR while their thermal stability was determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The rotational dynamics of the phenylene group in the benzene clathrate and in desolvated samples were characterized in terms of a two-fold flipping process. Solid state rotational barriers of ca. 12.8 and 14.6 kcal/mol were estimated for the benzene clathrate and desolvated samples, respectively.  相似文献   

3.
The energetic and structural changes taking place upon rotation of the central phenylene of 1,4-bis(3,3,3-triphenylpropynyl)benzene in the solid state were computed using molecular mechanics calculations. Pseudopolymorphic crystals of a benzene clathrate (1A) and a desolvated form (1B) were analyzed with models that account for varying degrees of freedom within the corresponding lattices. The calculated rotational barriers in a rigid lattice approximation, 78 kcal/mol for 1A and 72 kcal/mol for 1B, are about 5 times greater than those previously measured by variable-temperature 13C CPMAS NMR and quadrupolar echo 2H NMR line-shape analysis: 12.8 kcal/mol for 1A and 14.6 kcal/mol for 1B. The potential energy barriers calculated with a model that restricts whole body rotation and translational motions but allows for internal rotations give results that are near the experimental free-energy barriers. The calculated barriers for 1A and 1B are 15.5 and 16.2 kcal/mol, respectively. The differences between the rigid and partially relaxed models are attributed to the effect of correlated motions of the lattice and the rotating group, which are evident from the structural analysis of the atomic position data as a function of the dihedral angle of the rotator. The displacements of neighboring molecules near the rotary transition states for 1A and 1B can be as large as 2.7 and 1.1 A, respectively. The displacement and oscillation (C2) of interpenetrating phenyl rings from neighboring rotors proximal to the event are significant for both 1A and 1B. In addition, 6-fold (C6) benzene rotations in clathrate 1A were found to be directly correlated to the rotation of the phenylene rotator.  相似文献   

4.
A new series of 3,4-dihydro-2H-1,4-benzoxazine derivatives, where various substituents were introduced into one of the geminal dimethyl groups at the 2 position, were synthesized and their potassium channel-activating activity was evaluated. Introduction of a hydroxyl group, as in compound 5, resulted in good solubility in water and a long duration of action compared with the parent compound 1. Introduction of a nitrato group, as in compound 8, produced typical nitrate activity such as exhibited by nitroglycerine in addition to potassium channel-activating activity. X-ray structural analysis of compound 5 showed that the sum of the bond angles around the N atom at the 4 position was 357.8 degrees, suggesting that the N atom had an approximately sp2-like planar bond configuration.  相似文献   

5.
The configurational isomers of 2,5-dimethoxy-1,4-bis-[2-(2,4-dimethoxyphenyl)ethenyl]benzene have been investigated by ab initio (4-21G level) and MOPAC-AM1 semiempirical methods. The calculations were guided by and compared with single crystal X-ray results of the trans,trans-isomer determined at 298 K and 103 K. The barriers of rotation of the latter isomer in the free and the solid state were enumerated. A comparison with related molecules, in particular 1,4-bis[2-(3,4,5-trimethoxyphenyl)ethenyl]benzene, is made. The positioning of substituents is shown to be of importance for ring rotational movements and NMR shifts, as well as for UV /Vis spectroscopy. © 1996 by John Wiley & Sons, Inc.  相似文献   

6.
We report a highly convergent synthesis for the preparation of molecular gyroscopes consisting of para-phenylene rotors linked by triple bonds to methyl-substituted triptycenes acting as pivots and encapsulating frames. The desired 1,4-bis[2-(2,3,6,7,12,13-hexamethyl-10-alkyl-9-triptycyl)ethynyl]benzenes were prepared from 2,3-dimethyl-1,3-butadiene using Diels-Alder cycloadditions and Pd(0)-catalyzed coupling as the key reactions. The main challenge in the synthesis came about in the preparation of 9-alkynyl-triptycenes by Diels-Alder reaction of benzynes and 9-alkynyl-2,3,6,7-tetramethylanthracenes. These reactions occurred with chemical yields and regioselectivities that were strongly influenced by steric and electronic effects of substituents at C10 of the anthracene core. Anthracenes with methyl, propyl, and phenyl substituents were utilized to complete the synthesis of their corresponding molecular gyroscopes, and their solid-state structures were determined by single-crystal X-ray diffraction analysis. Examination of these results indicated that, as expected, the bulky triptycyl groups encourage crystallization motifs that create more free volume around the phenylene rotor, as needed to facilitate fast gyroscopic motion in the solid state.  相似文献   

7.
The solid-state photopolymerization of phenylene diacrylic acid (PDA) and its derivatives was studied as an application of solid-state photodimerization of cinnamic acid to photopolymerization of corresponding bifunctional molecule which has two cinnamic units in a single molecule. p- and m-PDA, and their esters and amides were prepared and investigated with respect to their photopolymerizability. Many of them have been found to polymerize into linear high polymers with the cyclobutane rings in the main chain on irradiation by ultraviolet or visible light. The polymerization process, the structure of the polymers, and their general properties were investigated in several ways. All the polymers are very similar to poly-2,5-distyrylpyrazine and poly-1,4-bis(β-pyridyl-2-vinyl) benzene with respect to their polymerization behavior, polymer structure, and some polymer properties: these polymers are soluble in a limited number of solvents, they have a high melting point and an extremely high crystallinity. On the basis of chemical behavior of poly-PDA and its phenyl ester the possible steric configurations of these polymers are discussed. It is demonstrated for the PDA series that solid-state dimerization can be generally extended to solid-state photopolymerization of the compound having two dimerizable units in a single molecule, although the crystal structure renders polymerization impossible in certain cases.  相似文献   

8.
Summary : Four monomers; 1,4-bis(1-naphthyl) benzene ( 5 and 7 ) and 1,4-bis(2- thienyl)benzene ( 6 and 8 ) containing one or two polystyrene short chains substituted in 2 or 2, 5 positions of central phenylene ring were synthesized by Suzuki coupling reaction of two polystyrene based macromonomers ( 3 and 4 ) with 1-naphthalene- and 2-thiophene boronic acid, respectively. By chemical oxidative polymerization using FeCl3 as oxidant, copolymers containing alternating phenylene and binaphthyl ( 9 , 11 ) or phenylene and bithienyl groups ( 10 , 12 ) and polystyrene as side chains have obtained. The exact control of polystyrene branch length was performed by atom transfer radical polymerization of styrene using as initiators 1,4 dibromo-2-(bromomethyl)benzene ( 1 ) and 1,4-dibromo-2,5 di(bromomethyl)benzene ( 2 ). Polymers were characterized by FT-IR, 1H-NMR, UV and fluorescence spectroscopy and thermal methods.  相似文献   

9.
1,4‐Dibromobenzenes carrying nonpolar hexoxy and polar oligo(ethylene glycol) side chains were subjected to Suzuki polycondensation with a benzene‐1,4‐bisboronic acid ester to produce high‐molar‐mass poly(para‐phenylene)s. The molar masses were determined with size exclusion chromatography with conventional polystyrene and universal calibration. These novel amphiphilically equipped rigid‐rod polymers have the potential to segregate lengthwise into polar and nonpolar domains, a property that has only rarely been described, and promise to exhibit novel interesting supramolecular properties. The oligo(ethylene gylcol) side chains terminate with a silyl‐protected alcohol group, and its deprotection on the polymer was proven to proceed quantitatively. This not only led to a further polarity increase but allows us to attach even more polar (e.g., charged) units in future projects. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2879–2889, 2003  相似文献   

10.
In the series of benzene‐1,4‐diamines (p‐phenylenediamines) investigated, 2‐(methoxymethyl)benzene‐1,4‐diamine (2‐methoxymethyl‐p‐phenylenediamine) is the most slowly oxidized, with removal of the first electron being rate determining. This electron‐withdrawing methoxymethyl group also drove a faster coupling step with 3‐aminophenol (m‐aminophenol) than for the analogs with electron‐donating groups. However, the series parent, benzene‐1,4‐diamine, exhibited the fastest coupling step. Since both N(1) and N(4) of the primary intermediates react with m‐aminophenol, it seems that steric hindrance by the 2‐substituents slows the overall rate. When 3‐amino‐2,6‐dimethylphenol is the coupler, the kinetics are biphasic. Nonproductive adducts are formed reversibly with all the primary intermediates by ipso attack at C(6). For 2‐(methoxymethyl)benzene‐1,4‐diamine, formation of this nonproductive adduct is favored more than for the other compounds in the series, in what seems to be a kinetically rather than thermodynamically controlled process. This slows the overall rate of color formation.  相似文献   

11.
We report the effects of protonation on the structural and spectroscopic properties of 1,4-dimethoxy-2,5-bis(2-pyridyl)benzene (9) and the related AB coploymer poly(2,5-pyridylene-co-1,4-[2,5-bis(2-ethylhexyloxy)]phenylene) (7). X-ray crystallographic analysis of 9, 1,4-dimethoxy-2,5-bis(2-pyridyl)benzene bis(formic acid) complex 10, and 1,4-dimethoxy-2,5-bis(2-pyridinium)benzene bis(tetrafluoroborate salt) (11) establishes that reaction of formic acid with 9 does not form an ionic pyridinium salt in the solid state, rather, the product 10 is a molecular complex with strong hydrogen bonds between each nitrogen atom and the hydroxyl hydrogen in formic acid. In contrast, reaction of 9 with tetrafluoroboric acid leads to the dication salt 11 with significant intramolecular hydrogen bonding (N-H.O-Me) causing planarization of the molecule. The pyridinium and benzene rings in 11 form a dihedral angle of only 3.9 degrees (cf. pyridine-benzene dihedral angles of 35.4 degrees and 31.4 degrees in 9, and 43.8 degrees in 10). Accordingly, there are large red shifts in the optical absorption and emission spectra of 11, compared to 9 and 10. Polymer 7 displays a similar red shift in its absorption and photoluminescence spectra upon treatment with strong acids in neutral solution (e.g. methanesulfonic acid, camphorsulfonic acid, and hydrochloric acid). This is also observed in films of polymer 7 doped with strong acids. Excitation profiles show that emission arises from both protonated and nonprotonated sites in the polymer backbone. The protonation of the pyridine rings in polymer 7, accompanied by intramolecular hydrogen bonding to the oxygen of the adjacent solubilizing alkoxy substituent, provides a novel mechanism for driving the polymer into a near-planar conformation, thereby extending the pi-conjugation, and tuning the absorption and emission profiles. The electroluminescence of a device of configuration ITO/PEDOT/polymer 7/Ca/Al is similarly red-shifted by protonation of the polymer.  相似文献   

12.
Novel blue emitters were synthesized based on the fullerene fragment corannulene. 1,2- bis(corannulenylethynyl)benzene and 1,4-bis(corannulenylethynyl)benzene were designed, synthesized, and shown to exhibit significant red shifts in their absorption spectra as compared to that of the parent corannulene. Photoluminescence studies show both 1,2- bis(corannulenylethynyl)benzene and 1,4- bis(corannulenylethynyl)benzene gives enhanced blue luminescence compared to the parent corannulene structure. 1,4-bis(corannulenylethynyl)benzene was observed to give intense blue luminescence when excited at 400 nm. DFT and TD-DFT calculations were performed and shown to be consistent with the observed experimental results.  相似文献   

13.
A series of poly(6-azulenylethynyl)benzenes substituted with n-hexyloxycarbonyl chains at 1,3-positions in azulene rings, i.e., hexakis-, 1,2,4,5-tetrakis-, 1,3,5-tris-, and 1,4-bis(6-azulenylethynyl)benzene derivatives 1, 2, 3, and 4b, have been prepared by a simple one-pot reaction involving repeated Pd-catalyzed alkynylation of halogenated arenes with substituted 6-ethynylazulene and/or ethynylated arenes with substituted 6-bromoazulene under Sonogashira-Hagihara conditions. The redox behavior of these novel poly(6-azulenylethynyl)benzene derivatives was examined by cyclic voltammetry (CV), which revealed the presumed multielectron redox properties. Compound 4b exhibited a one-step, two-electron reduction wave upon CV, which revealed the formation of the dianion stabilized by two 6-azulenylethynyl substituents under electrochemical reduction conditions. Four 6-azulenylethynyl substituents on a benzene ring in a 1,2,4,5 relationship increased the electron-accepting properties because of the formation of a stabilized closed-shell dianionic structure, whereas 3 was reduced at more negative reduction potentials. In contrast to the multistep redox behavior of 2, compound 1 was reduced in one step at -1.28 V upon CV. Compound 1 showed a wide temperature range of columnar mesophases (Col(ho) and Col(ro)) from 77.3 degrees C to the decomposition temperature at ca. 270 degrees C. Compounds 2, 3, and 4b exhibited columnar mesomorphism (Col(ro)) with crystalline polymorphs for 2, unusual triple-melting behavior for 3, and both double-melting behavior and columnar mesomorphism (Col(ho)) for 4b. Therefore, the investigated systems exemplify a new principle for multielectron redox behavior with liquid crystalline properties.  相似文献   

14.
The rotational dynamics of phenylene and diamantane rotators in crystals of 1,9-bis(4-[3,3,3-triphenylpropynyl]phenyl)diamantane were analyzed independently within the same crystal structure. The dynamics of phenylene rotation were established by dynamic line shape analysis using 13C CPMAS NMR. The phenylene signals were selectively highlighted by deuteration of the aromatic trityls and the use of short contact times for cross polarization. The dynamics of the diamantane group were established by 1H spin-lattice relaxation under conditions where dipolar relaxation was shown to be the dominant mechanism between 250 and 425 K. A factor of 20 000 between the rates of rotation of the faster diamantane and the slower phenylene at 300 K supports expectations that higher symmetry rotors should have significantly faster dynamics.  相似文献   

15.
Four new compounds: 1,4-dimetoxy-2,5-bis[2-(tien-2-yl)ethenyl]benzene), 1,4-dietoxy-2,5-bis[2-(tien-2-yl)ethenyl]benzene), 1,4-isopropyloxy-2,5-bis[2-(tien-2-yl)ethenyl]benzene) and 1,4-dietoksy-2,5-bis[2-(5-methylthiophen-2-yl)ethenyl]benzene are synthesized. Three steroisomers ZZ, EZ and EE are isolated from the reaction mixture for the first two of them. Third compound is fully converted to the most stable EE form. Polymerization of all isomers leads to identical polymeric product. Mechanism of polymerization is recognized by using model molecule with methyl substituents blocking α-, α′-sites. All seven stereoisomers have photoluminescent properties. Detailed spectral and electrochemical studies reveal isomerization phenomena during oxidation or at light exposure. Published in Russian in Elektrekhimiya, 2006, Vol. 42, No. 12, pp. 1401–1408. Based on the report delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes.” October 18–22, 2005, Moscow. The text was submitted by the authors in English.  相似文献   

16.
The known polymerization of 4,4′-difluorobenzophenone (DFB) with the dianion of hydroquinone to poly(phenylene ether ether ketone) (PEEK) and polymerization of either DFB with the dianion of 4,4′-dihydroxybenzophenone or self polycondensation of the anion of 4-hydroxy-4′-fluoro-benzophenone to poly(phenylene ether ketone) (PEK) were studied in N-cyclohexyl-2-pyrrolidone (CHP), which is a high-boiling aprotic polar solvent. The formation of high-molecular weight PEEK and PEK in this solvent was very efficient. The reactivity in CHP can be ascribed to effective solvation of metal ions rendering the anion very reactive toward nucleophilic substitution. The polymerization was extended to 4,4′-bis(4-fluorobenzoyl)diphenyl ether and 1,4-bis[4-(4-fluorobenzoyl)phenoxy]benzene to give a high molecular weight polymer with PEK and PEEK repeating units and PEEK respectively. The polymerization of DFB with purified anhydrous sodium sulfide in CHP gave rapidly a high molecular weight poly(phenylene ketone sulfide) (PKS). In contrast, diphenyl sulfone (DPS) was not very effective in obtaining such a high molecular weight PKS even with prolonged heating, which suggests the uniqueness of CHP in promoting a high degree of polymerization.  相似文献   

17.
The reactions of bis- and tris(tert-butylethynyl)benzenes with dialkylgallium hydrides afforded two different types of products. 1,4-Di(tert-butylethynyl)benzene and dialkylgallium hydrides R(2)GaH bearing relatively small substituents (R = Et, nPr) gave the expected addition products with each C triple bond C triple bond inserted into a Ga-H bond. The intact GaR(2) groups are attached to those carbon atoms which are in alpha-position to the benzene rings, and intermolecular Ga-C interactions led to the formation of one-dimensional coordination polymers. In contrast secondary reactions with the release of the corresponding trialkylgallium derivatives GaR(3) (R = Et, nPr, iPr, CH(2)tBu, tBu) were observed for all hydrogallation reactions involving the trisalkyne 1,3,5-tris(tert-butylethynyl)benzene. A similar reaction was observed upon treatment of the 1,4-bisalkyne with a dialkylgallium hydride bearing a relatively bulky substituent (R = neopentyl). Cyclophane type molecules are formed in all these cases with two or three gallium atoms in the bridging positions between both benzene rings.  相似文献   

18.
The crystal structure of 1,3,5-tris(4-methylnaphth-1-yl)benzene, 1, shows one naphthyl substituent in an anti relationship to the other two. On the other hand, low temperature (-70 degrees C) (1)H NMR spectra in solution show the presence of a second rotational conformer (rotamer) having all the three naphthyl substituents in a syn relationship. The interconversion barrier between the anti (77%) and syn (23%) rotamers of 1 was determined by line shape simulation of the temperature-dependent NMR spectra (Delta G(++) = 12.1 kcal mol(-1)). In the analogous disubstituted meta and paraderivatives, that is, 1,3- and 1,4-bis(4-methylnaphth-1-yl)benzene (2 and 3, respectively), the presence of both the anti and syn rotamers was also detected by low-temperature NMR spectroscopy. In the latter compounds, the proportions of the anti and syn forms are nearly equal, and the corresponding anti to syn interconversion barriers were found to be lower (11.4 and 11.1(5) kcal mol(-1), respectively) than those of the trisubstituted derivative 1.  相似文献   

19.
RuH(OAc)(CO)(PPh3)2 catalyzed silylative cross‐coupling polycondensation of 4‐(dimethylvinylsilyl)styrene ( 2 ) and copolycondensation of 1,4‐divinylbenzene ( 4 ) with 1,4‐bis(dimethylvinylsilyl)benzene ( 5 ) appeared to be a novel synthetic route for highly stereo‐ and regioselective synthesis of phenylene(arylene)‐silylene‐vinylene polymers.  相似文献   

20.
The rotational correlation time (tau(2R)) is determined for D(2)O (polar) and C(6)D(6) (apolar) in 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF(6)]) by measuring (2)H (D) nuclear magnetic resonance spin-lattice relaxation time (T(1)) in the temperature range from -20 to 110 degrees C. The tau(2R) ratio of water to benzene (tau(WB)) was used as a measure of solute-solvent attraction. tau(WB) is 0.73 and 0.52 in [bmim][Cl] and [bmim][PF(6)], respectively, whereas the molecular volume ratio is as small as 0.11. The slowdown of the water dynamics compared to the benzene dynamics in ionic liquids is interpreted by the Coulombic attractive interaction between the polar water molecule and the anion. As for the anion effect, the rotational dynamics of water solvated by Cl(-) is slower than that solvated by PF(6) (-), whereas the rotational dynamics of benzene is similar in the two ionic liquids. This is interpreted as an indication of the stronger solvation by the anion with a larger surface charge density. The slowdown of the water dynamics via Coulombic solvation is actually significant only at water concentrations lower than approximately 9 mol dm(-3) at room temperature, and it is indistinguishable at temperatures above approximately 100 degrees C. The quadrupolar coupling constants determined for D(2)O and C(6)D(6) in the ionic liquids were smaller by a factor of 2-3 than those in the pure liquid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号