首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of novel bidentate pyrazolone based Schiff base ligands were synthesized by interaction of 4-benzoyl-3-methyl-1-(4′-methylphenyl)-2-pyrazolin-5-one with various aromatic amines like aniline, o-,m-,p-chloroaniline and o-,m-,p-toluidine in a ethanolic medium. All of these ligands have been characterized on the basis of elemental analysis, IR and 1H NMR data. The molecular geometries of five of these ligands have been determined by single crystal X-ray study. Crystallographic study reveals that these ligands exist in the amine-one tautomeric form in the solid state. NMR study also suggests the existence of the amine-one form in solution at room temperature. Ab initio calculations for representative ligand HL1 has been carried out to know the coordination site of the ligand. Novel vanadium Schiff base complexes of these ligands with general formula [OV(L1–7)2(H2O)] have been prepared by interaction of aqueous solution of vanadyl sulfate pentahydrate with DMF solution of the appropriate ligands. The resulting complexes have been characterized on the basis of elemental analysis, vanadium determination, molar conductance and magnetic measurements, thermo gravimetric analysis, infrared and electronic spectral studies. Suitable distorted octahedral structures have been proposed for these complexes.  相似文献   

2.
A family of chiral sulfinamido-sulfonamide ligands have been synthesized from sulfinimines and has been evaluated as ligands for the enantioselective addition of diethylzinc to aldehydes with Ti(OiPr)4. The structure of these diamino compounds has been systematically modified to optimize the results.  相似文献   

3.
The coordination chemistry of a series of bis-bidentate ligands with cadmium(II) ions has been investigated. The ligands, containing two N,S-donor chelating (pyrazolyl/thioether) fragments, have afforded complexes of a variety of structural types (dinuclear M2L2 ‘mesocate’ complexes, a one-dimensional chain coordination polymer and a simple mononuclear complex) according to whether the bis-bidentate ligands act as bridges spanning two metal ions, or a tetradentate chelate to a single metal ion. The p-phenylene and m-biphenyl spaced ligands L1 and L3 form dinuclear M2L2 complexes where the ligands are arranged in a ‘side-by-side’ fashion. In contrast the m-phenylene spaced ligand L2 forms a one-dimensional coordination polymer where the ligands adopt a highly folded conformation. The 1,8-naphthalene spaced ligand L4 adopts a tetradendate chelating mode and affords a simple mononuclear complex.  相似文献   

4.
《Comptes Rendus Chimie》2015,18(2):215-222
A series of chiral tridentate Schiff-base ligands and their polymer-supported ligands were conveniently prepared and introduced as copper(II) chiral complexes for the asymmetric Henry reaction. The structures of these ligands have been characterized by IR, 1H NMR, 13C NMR and MS. The experimental results showed that the corresponding β-nitro alcohols were obtained in moderate to high yields (up to 98%) with up to 98% ee under mild conditions. The complex catalyst forming from copper(II) polymer-supported ligands could be recycled by a simple filtration and reused 6 times at least with similar good catalytic effect (about 94% yield and 90% ee).  相似文献   

5.
In this study, firstly, two single substitute novel ligands have been synthesized by reacting melamine with 3,4,-dihydroxybenzaldeyhde or 4-carboxybenzaldehyde. Then, eight new mono nuclear single substitute [Salen/Salophen Fe(III) and Cr(III)] complexes have been synthesized by reacting the ligands [2-(3,4-dihydroxybenzimino)-4,6-diamimo-1,3,5-triazine and 2-(4-carboxybenzimino)-4,6-diamimo-1,3,5-triazine)] with tetradentate Schiff bases N,N′-bis(salicylidene)ethylenediamine-(salenH2) or bis(salicylidene)-o-phenylenediamine-(salophen H2). And then, all ligands and complexes have been characterized by means of elementel analysis, FT-IR spectroscopy, 1H NMR, LC–MS, thermal analyses and magnetic suscebtibility measurements. Finally, metal ratios of the prepared complexes were determined using AAS. The complexes have also been characterized as disorted octahedral low-spin Fe(III) and Cr(III) bridged by catechol and COO? groups.  相似文献   

6.
Bis(μ-methyl-1,3-dimethyl-η3-allylnickel) which has been modified by P ligands with a chiral substituent reacts with carbon monoxide under the formation of optically active 3-methyl-E-4-hexen-2-on. The investigated P ligands (PRR2) have one chiral substituent (R = 1R,3R,4S-(?)-menthyl) and the other substituents have been varied by taking the same alkyl or alkoxy groups (R = Me, Et, i-Pr, OMe, OEt, O-i-Pr). It has been found that the extent and the direction of optical induction depends on the concentration of the P-ligand and the kind of the achiral substituents at phosphorus.  相似文献   

7.
Formation constants of mixed ligand complexes of Cu2+, Zn2+, Ni2+, Co2+, and Mn2+,with cyadine-5′-monophosphoric acid (CMP) and various primary ligands such as 1,10-phenanthroline(phen), glycylglycine(glygly) and salicylic acid (sal) have been determined in aqueous solution at 35°C and 0.1 M (KNO3) by potentiomeric measurements. The acid dissociation constants of all the above mentioned ligands together with their 1 : 1 binary metal complex formation constants were also measured at 35°C. In general all the 1 : 1 binary complexes follow the Irving-Williams order of stability. Further the binary metal complexes of primary ligands are more stable than their ternary complexes with CMP. For ternary complexes, Δ(log K) values seem to change from positive to highly negative as the coordinating atoms of the primary ligands were varied from N,N to N,O? to O?O?. The higher stability of ternary complexes involving phen is due to its Π-bonding interaction with the above metal ions and the relative decrease in the stability of other ternary systems is due to the coulombic repulsion of donor oxygen atoms of primary and secondary ligands. Thus for ternary complexes the stabilities follow a decreasing order of M-phen-CMP > M-glygly-CMP > M-sal-CMP.  相似文献   

8.
Binuclear complexes of Pt(II) cycloplatinated with 2-phenylbenzothiazole and bridging ligands have been shown to contain the Pt-Pt bond. The complexes have been studied by X-ray diffraction, 1H NMR and electronic absorption spectroscopy, and electrochemical methods. The complexes cis-N(bt),S-isomers with antisymmetric positions of the cyclometalated and the bridging ligands have been detected in the crystals as well as in the solutions. The low-wavelength absorption and luminescence of the complexes have been assigned to the metal-metal-ligand charge transfer. The two-electron oxidation and reduction waves in the voltamperograms are associated with the metal- and the ligand-centered processes, respectively.  相似文献   

9.
In the present study two new series of Copper(II), Nickel(II) and Cobalt(II) complexes with two newly synthesized Schiff base ligands 4,6-bis(1-(4-bromophenylimino)ethyl)benzene-1,3-diol (H2L1), 4,6-bis(1-(4-methoxyphenylimino) ethyl)benzene-1,3-diol (H2L2) and organic ligands 8-hydroxy quinoline, 1,10-phenanthroline have been prepared. The Schiff bases H2L1 and H2L2 ligands were synthesized by the condensation of 4,6-diacetyl resorcinol with 4-bromo aniline and 4-methoxy aniline. The ligands and their metal complexes have been characterized by FT-IR, Mass, 1H NMR, UV–Vis., elemental analysis, ESR and Thermal gravimetric analysis. The Schiff base and their metal complexes were tested for antimicrobial activity against gram positive bacteria Staphylococcus aureus, Streptococcus pyogenes and gram negative bacteria Escherichia coli, Pseudomonas aeruginosa and fungus Candida albicans, Aspergillus niger and Aspergillus clavatus using Broth Dilution Method.  相似文献   

10.
Reactions of 3-acetyl-2,5-dimethylthiophene with thiosemicarbazide and semicarbazide hydrochloride resulted in the formation of new heterocyclic ketimines, 3-acetyl-2,5-dimethylthiophene thiosemicarbazone (C9H13N3OS2 or L1H) and 3-acetyl-2,5- dimethylthiophene semicarbazone (C9H13N3OS or L2H), respectively. The Pd(II) and Pt(II) complexes have been synthesized by mixing metal salts in 1:2 molar ratios with these ligands by using microwave as well as conventional heating method for comparison purposes. The authenticity of these ligands and their complexes has been established on the basis of elemental analysis, melting point determinations, molecular weight determinations, IR, 1H NMR and UV spectral studies. These studies showed that the ligands coordinate to the metal atom in a monobasic bidentate manner and square planar environment around the metal atoms has been proposed to the complexes. Both the ligands and their complexes have been screened for their antimicrobial activities. The antiamoebic activity of both the ligands and their palladium compounds against the protozoan parasite Entamoeba histolytica has been tested.  相似文献   

11.
New diphosphinite ligands based on atropoisomeric diol backbones and (R,R)-2,5-dimethylphospholane moieties have been prepared and fully characterised. For each ligand structure, both diastereomers have been synthesised. These ligands are available through a straightforward procedure in good yields. The solid state structures of two diastereomeric ligands are reported. These ligands have been applied to Rh-catalysed asymmetric hydrogenations and hydroformylations of CC bonds as well as in Ir-catalysed asymmetric hydrogenations of CN bonds. Turnover frequencies in the range of 10,000 h?1 and enantioselectivities of up to 98% ee have been achieved. The different chirality elements within the ligands led to marked cooperative effect in catalysis. Interestingly, there is no general privileged diastereomeric structure but rather a matched diastereomer for each application.  相似文献   

12.
Mixed-ligand binuclear and mononuclear europium carboxylate complexes with nitrogen-and phosphorus-containing neutral ligands have been studied by luminescence and X-ray photoelectron spectroscopy. The coordination of neutral ligands through the nitrogen donor atom leads to an increase in electron density at the Eu3+ atom. In groups of carboxylates of the same type, the coordination of neutral donor ligands leads to an increase in the relative intensity of the 5 D 0-7 F 4 electric dipole transition. Analysis of the luminescence excitation spectra points to the presence of two excitation energy transfer channels for mixed-ligand europium trifluoroacetate and toluate complexes and of one channel for europium cinnamate complexes with neutral ligands.  相似文献   

13.
This review deals with the chemistry and coordination behaviour of imino-aza phosphorus(V) ligands focussing on s- and p-block as well as Group 11 and 12 metal complexes. Imino phosphorus(V) ligands contain one or more terminal RNP-units, which include iminophosphoranes R3PNR′, monoanionic diiminophosphinates [R2P(NR′)2], dianionic triiminophosphonates [RP(NR′)3]2− and trianionic tetraiminophosphates [P(NR′)4]3−. Aza-phosphorus(V) ligands feature bridging PNP units, which include cyclic and polymeric phosphazenes [R2PN]n. Imino-aza- phosphorus(V) ligands containing both imino and aza functions include linear diiminodiphosphazenates [N{R2P(NR′)2}2] and multianionic poly(imino) cyclophosphazeantes such as [N4{RP(NR′)}4]4− and [N3{P(NR′)2}3]6−. Imino-aza phosphorus(V) ligands are assembled of three basic building blocks: the cationic tetravalent phosphonium centre (P), the anionic divalent amido function (N) and the terminally arranged R-group. The overall negative charge Z of the resulting ligand system is equal to the difference between the number of P and the number of N-centres: Z=n(P)n(N). Imino-aza phosphorus(V) ligands are electron rich N-donor ligands which co-ordinate via both N(imino) and N(aza) functions and have been applied in numerous metal complexes in order to stabilise low coordination numbers, unusual oxidation states and bonding modes or serve as ligands in homogeneous catalysis. The R-group provides both steric bulk and solubility in non-polar solvents. Multianionic phosphazenates feature a polydentate ligand surface, which facilitates an extremely high metal load. PN units of iminophosphoranes and phosphazenes have acceptor properties and enhance the acidity of α-alkyl and ortho-aryl protons. Deprotonation of P-alkyl and P-aryl iminophosphoranes give ligand systems featuring C,N chelating sites, which are also discussed.  相似文献   

14.
The tran-bis(ethylenediamine)bis(saccharinato)Zinc(II), [Zn(sac)2(en)2] (ZSED), (en: ethylenediamine and sac: saccharinate) complex has been synthesized and its crystal structure has been determined by X-ray diffraction analysis. The compound crystallizes in space group P21/c. The Zn(II) ion is hexa-coordinated by four nitrogens of two bidentate en ligands composing the basal plane and two nitrogen atoms from the monodentate two sac ligands (N-bonded) occuping the axial sites, adopting an elongated octahedral sphere. Both en and sac ligands occupy the trans positions of the coordination octahedron. The Zn(II) ion in title compound sits on a inversion centre and is octahedrally coordinated two bidentate en (ethylenediamine) and two sac (saccharinate) (N-bonded) ligands. The magnetic environments of Cu2+ doped [Zn(sac)2(en)2] complex have been identified by electron paramagnetic resonance (EPR) technique. Cu2+ doped ZSED single crystals have been studied at room temperature in three mutually perpendicular planes. The calculated results of the Cu2+ doped ZSED indicate that Cu2+ ion contains two magnetically inequivalent Cu2+ sites in distinct orientations occupying substitutional positions in the host lattice and show very high angular dependence.  相似文献   

15.
The main goal of this research is to investigate the structural and thermochemical aspects of complexation between La3+ with tetrapropyl malonamide (TPMA) and tetrapropyl diglycolamide (TPDGA) ligands via density functional theory (DFT) methods. In this respect, the structural parameters of [La-TPMA]3+ and [La-TPDGA]3+ complexes have been calculated and compared with the available X-ray crystallographic data. These comparisons revealed that both calculated structural values using B3LYP and M06 are in a reliable agreement with X-ray crystal structure with a near accuracy. In the next step, the more efficiency of diglycolamides in comparison with malonamides in the extraction of La3+ have been analyzed by calculating thermochemical properties of the complexation. It should be stated that this issue has been observed in many experimental elucidations. In the next step, the inclusion of solvent effects on thermodynamical properties of complexation has been evaluated via polarized continuum model (PCM) calculations. In this context, enthalpy and Gibbs free energy changes have been determined in the presence of three solvents, chloroform, toluene and n-hexane. Our obtained results demonstrate that using n-hexane as solvent is more favorable thermodynamically than chloroform and toluene that confirms the previously observed experiments. Finally, the bond orders of some selected key bonds in TPMA and TPDGA ligands and their corresponded La3+ complexes have been evaluated comparatively to analyze the electronic features of coordination in [La-TPMA]3+ and [La-TPDGA]3+ complexes.  相似文献   

16.
Cu(II) complexes have been synthesized from the Schiff base ligands derived from furfurlyidene-4-aminoantipyrine and aniline (L1)/p-nitroaniline (L2)/p-hydroxyaniline (L3). They were characterized using analytical and spectral techniques. All the Cu(II) complexes exhibit square planar geometry. The X-band ESR spectra of the copper complexes in DMSO solution at 300 and 77 K were recorded and their salient features are reported. The in vitro biological screening effects of the investigated compounds were tested against the bacterial species, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species, Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans by serial dilution method. A comparative study of inhibition values of the Schiff base ligands and their complexes indicate that the complexes exhibit higher antimicrobial activity than the Schiff base ligands. Superoxide dismutase and reducing power activities of the copper complexes have also been studied. Depending on the molecular structure, the [CuL2(OAc)2] complex possess promising SOD mimetic activities.  相似文献   

17.
《Tetrahedron letters》2004,45(41):7723-7726
New ligands and their complexes with iron(III) chloride have been suggested and prepared: (R,S)-, (R,R)- and (S,S)-2,6-bis(1-benzyl-4-isopropyl-4-methyl-4,5-dihydro-1H-imidazol-5-on-2-yl) pyridines. Both the ligands and their complexes were characterised by 1H and 13C NMR spectroscopy, optical rotation and X-ray diffraction.  相似文献   

18.
The synthesis, characterization, spectroscopic and electrochemical properties of trans-[CoIII(L1)(Py)2]ClO4 (I) and trans-[CoIII(L2)(Py)2]ClO4 (II) complexes, where H2L1 = N,N′-bis(5-chloro-2-hydroxybenzylidene)-1,3-propylenediamine and H2L2 = N,N′-bis(5-bromo-2-hydroxybenzylidene)-1,3-propylenediamine, have been investigated. Both complexes have been characterized by elemental analysis, FT-IR, UV-Vis, and 1H NMR spectroscopy. The crystal structure of I has been determined by X-ray diffraction. The coordination geometry around cobalt(III) ion is best described as a distorted octahedron. The electrochemical studies of these complexes revealed that the first reduction process corresponding to Co(III/II) is electrochemically irreversible accompanied by dissociation of the axial Co-N(Py) bonds. The in vitro antimicrobial activity of the Schiff bse ligands and their corrsponding complexes have been tested against human pathogenic bacterias such as Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The cobalt(III) complexes showed lower antimicrobial activity than the free Schiff base ligands.  相似文献   

19.
The Schiff base ligands N,N′-(±)-trans-bis(3,5-dichloro-2-hydroxyacetophenone)-1,2-cyclohexanediamine (H2L1) and N,N′-(±)-trans-bis(5-chloro-4-methyl-2-hydroxyacetophenone)-1,2-cyclohexanediamine (H2L2) were derived from the condensation of trans-1,2-diaminocyclohexane with 3,5-dichloro-2-hydroxyacetophenone or 5-chloro-4-methyl-2-hydroxyacetophenone, respectively. Both these ligands formed well-defined complexes with vanadium (IV) and (V) under suitable experimental conditions. These complexes have been characterized by elemental analysis, molar conductivity, magnetic moments, infrared, electronic spectra, ESR, X-ray diffraction, and thermogravimetric analysis. X-ray diffraction study of [VO(L2)]·H2O complex indicated its monoclinic crystal system with a = 9.8525, b = 23.6271, c = 9.0904 Å, and β = 97.87°. The complexes [VO(L1)]·H2O and [VO(L2)]·H2O have been examined as catalysts for epoxidation of styrene in the presence of hydrogen peroxide as oxidant. The IR spectral data suggest that both the ligands behave as dibasic tetradentate chelating agent with ONNO donor atoms sequence toward cental metal ion.  相似文献   

20.
Two novel P1-stereogenic bisdiamidophosphites derived from (3R,4R)-N-benzyltartarimide as a chiral 1,2-diol have been prepared from readily available starting materials. Palladium and rhodium catalytic systems containing these new P1,P1-bidentate ligands afforded 96%, 83% and 65% ee in asymmetric allylic substitution, hydrogenation and addition processes, respectively. These diastereomeric diamidophosphites were found to be complementary stereoselectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号