首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The thermal decompositon of a number of organo-bielemental vanadium compounds with the general formula Cp2V(ER3) (ER3 - GeEt3, SnEt3, CH2SiMe3, SeGeEt3) has been investigated in solids and in solution. The main decomposition products of Cp2V(SnEt3) are vanadocene and hexaethyldistannane. Et3GeH, Et3GeCp, Cp2V and CpV(C5H4GeEt3) are formed from Cp2V (GeET3) decomposition. Isolated CpV(C5H4GeEt3) is characterized by IR and mass spectra. The decomposition of Cp2V(CH2SiMe3) is accompanied by Me4Si, Cp2V and CpV-(C5H4CH2SiMe3) formation, the latter is identified from the mass spectrum. Triethylgermane, vanadocene, and a diselenide of vanadium are isolated on decomposition of Cp2V(SeGeEt3). Based upon the experimental data, mechanisms for the decompositon are proposed.  相似文献   

2.
Four definite compounds exist in the Sm2O3Ga2O3 binary phase diagram, namely: Sm3GaO6, Sm4Ga2O9, SmGaO3, and Sm3Ga5O12. The 31 compound is orthorhombic (space group Pnna - Z.4) with the cell parameters: a = 11.400Å, b = 5.515Å, c = 9.07Å and belongs to the oxysel family. Sm3GaO6 and SmGaO3 melt incongruently at 1715 and 1565°C; Sm4Ga2O9 and Sm3Ga5O12 have a congruent melting point at 1710 and 1655°C. With regard to the Gd2O3Ga2O3 system three definite compounds have been identified: Gd3GaO6, Gd4Ga2O9, and Gd3Ga5O12. Only the garnet melts congruently at 1740°C with the following composition: Gd3.12Ga4.88O12. Gd3GaO6, and Gd4Ga2O9 melt incongruently at 1760 and 1700°C. GdGaO3 is only obtained by melt overheating which may yield an equilibrium or a metastable phase diagram.  相似文献   

3.
A new ruthenium-rhodium mixed-metal cluster HRuRh3(CO)12 and its derivatives HRuRh3(CO)10(PPh3)2 and HRuCo3(CO)10(PPh3)2 have been synthesized and characterized. The following crystal and molecular structures are reported: HRuRh3(CO)12: monoclinic, space group P21/c, a 9.230(4), b 11.790(5), c 17.124(9) Å, β 91.29(4)°, Z = 4; HRuRh3(CO)10(PPh3)2·C6H14: triclinic, space group P1, a 11.777(2), b 14.079(2), c 17.010(2) Å, α 86.99(1), β 76.91(1), γ 72.49(1)°, Z = 2; HRuCo3(CO)10(PPh3)2·CH2Cl2: triclinic, space group P1, a 11.577(7), b 13.729(7), c 16.777(10) Å, α 81.39(4), β 77.84(5), γ 65.56°, Z = 2. The reaction between Rh(CO)4? and (Ru(CO)3Cl2)2 tetrahydrofuran followed by acid treatment yields HRuRh3(CO)12 in high yield. Its structural analysis was complicated by a 80–20% packing disorder. More detailed structural data were obtained from the fully ordered structure of HRuRh3(CO)10(PPh3)2, which is closely related to HRuCo3(CO)10(PPh3)2 and HFeCo3(CO)10(PPh3)2. The phosphines are axially coordinated.  相似文献   

4.
Three new sodium cobalt (nickel) selenite compounds, namely, Na2Co2(SeO3)3, Na2Co1.67Ni0.33(SeO3)3, and Na2Ni2(SeO3)3 have been hydro-/solvothermally synthesized in the mixed solvents of acetonitrile and water. Single-crystal X-ray diffraction analyses reveal that these isostructural compounds belong to the orthorhombic Cmcm space group and their structures feature three-dimensional open frameworks constructed by the two-dimensional layers of [MSeO3] pillared by the [SeO3]2− groups. The two different types of Na+ ions reside in the intersecting two-dimensional channels parallel to the a- and c-axes, respectively. Their thermal properties have been investigated via TGA-DSC. The magnetic measurements indicate the existence of the antiferromagnetic interactions in these compounds.  相似文献   

5.
The compounds RbAuUSe3, CsAuUSe3, and RbAuUTe3 were synthesized at 1073 K from the reactions of U, Au, Q, and A2Q3 (A=Rb or Cs; Q=Se or Te). The compound CsAuUTe3 was synthesized at 1173 K from the reaction of U, Au, Te, and CsCl as a flux. These isostructural compounds crystallize in the KCuZrS3 structure type in space group Cmcm of the orthorhombic system. The structure consists of layers that contain nearly regular UQ6 octahedra and distorted AuQ4 tetrahedra. The infinite layers are separated by bicapped trigonal prismatic A cations. The magnetic behavior of RbAuUSe3 deviates significantly from Curie–Weiss behavior at low temperatures. For T>200 K, the values of the Curie constant C and the Weiss constant θp are 1.82(9) emu K mol−1 and −3.5(2)×102 K, respectively. The effective magnetic moment μeff is 3.81(9) μB. Formal oxidation states of A/Au/U/Q may be assigned as +1/+1/+4/−2, respectively.  相似文献   

6.
Ag4(Mo2O5)(SeO4)2(SeO3) has been synthesized by reacting AgNO3, MoO3, and selenic acid under mild hydrothermal conditions. The structure of this compound consists of cis-MoO22+ molybdenyl units that are bridged to neighboring molybdenyl moieties by selenate anions and by a bridging oxo anion. These dimeric units are joined by selenite anions to yield zigzag one-dimensional chains that extended down the c-axis. Individual chains are polar with the C2 distortion of the Mo(VI) octahedra aligning on one side of each chain. However, the overall structure is centrosymmetric because neighboring chains have opposite alignment of the C2 distortion. Upon heating Ag4(Mo2O5)(SeO4)2(SeO3) looses SeO2 in two distinct steps to yield Ag2MoO4. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): orthorhombic, space group Pbcm, a=5.6557(3), b=15.8904(7), c=15.7938(7) Å, V=1419.41(12), Z=4, R(F)=2.72% for 121 parameters with 1829 reflections with I>2σ(I). Ag2(MoO3)3SeO3 was synthesized by reacting AgNO3 with MoO3, SeO2, and HF under hydrothermal conditions. The structure of Ag2(MoO3)3SeO3 consists of three crystallographically unique Mo(VI) centers that are in 2+2+2 coordination environments with two long, two intermediate, and two short bonds. These MoO6 units are connected to form a molybdenyl ribbon that extends along the c-axis. These ribbons are further connected together through tridentate selenite anions to form two-dimensional layers in the [bc] plane. Crystallographic data: (193 K; MoKα, λ=0.71073 Å): monoclinic, space group P21/n, a=7.7034(5), b=11.1485(8), c=12.7500(9) Å, β=105.018(1) V=1002.7(2), Z=4, R(F)=3.45% for 164 parameters with 2454 reflections with I>2σ(I). Ag2(MoO3)3SeO3 decomposes to Ag2Mo3O10 on heating above 550 °C.  相似文献   

7.
The compound previously reported as Ba2Ti2B2O9 has been reformulated as Ba3Ti3B2O12, or Ba3Ti3O6(BO3)2, a new barium titanium oxoborate. Small single crystals have been recovered from a melt with a composition of BaTiO3:BaTiB2O6 (molar ratio) cooled between 1100°C and 850°C. The crystal structure has been determined by X-ray diffraction: hexagonal system, non-centrosymmetric space group, a=8.7377(11) Å, c=3.9147(8) Å, Z=1, wR(F2)=0.039 for 504 unique reflections. Ba3Ti3O6(BO3)2 is isostructural with K3Ta3O6(BO3)2. Preliminary measurements of nonlinear optical properties on microcrystalline samples show that the second harmonic generation efficiency of Ba3Ti3O6(BO3)2 is equal to 95% of that of LiNbO3.  相似文献   

8.
The interactions in the GeS2-Cr2S3 and Cu2GeS3-Cr2S3 sections were studied by differential thermal analysis and X-ray powder diffraction. The GeS2-Cr2S3 section was shown to be quasi-binary, with a degenerate eutectic; no ternary compound was formed. In the Cu2GeS3-Cr2S3 section, a quaternary phase of variable composition having a homogeneity range of 69–75 mol % Cr2S3 crystallized in the cubic system. The samples of this composition are spin glasses with freezing temperatures of 20–25 K.  相似文献   

9.
Electrical conductivities were measured for the ternary systems Y(NO3)3+La(NO3)3+H2O, La(NO3)3+Ce(NO3)3+H2O, La(NO3)3+Nd(NO3)3+H2O, and their binary subsystems Y(NO3)3+H2O, La(NO3)3+H2O, Ce(NO3)3+H2O, and Nd(NO3)3+H2O at (293.15, 298.15 and 308.15) K. The measured conductivities were used to test the generalized Young’s rule and the semi-ideal solution theory. The comparison results show that the generalized Young’s rule and the semi-ideal solution theory can yield good predictions for the conductivities of the ternary electrolyte solutions, implying that the conductivities of aqueous solutions of (1:3 + 1:3) electrolyte mixtures can be well predicted from those of their constituent binary solutions by the simple equations.  相似文献   

10.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

11.
The complex salts ((DienH3)[IrCl6](NO3) (I), (DienH3)[PtCl6](NO3) (II), and (DienH3)[IrCl6]0.5[PtCl6]0.5(NO3) (III) (where Dien is NH2(CH2)2NH(CH2)2NH2) were synthesized and characterized by elemental, X-ray diffraction, and thermal analyses and by electronic and IR spectroscopies. Solid solution of the composition Ir0.35Pt0.65 was obtained by decomposition of compound III in the atmosphere of hydrogen. Original Russian Text ? E.V. Makotchenko, I.A. Baidina, P.E. Plusnin, L.A. Sheludyakova, Yu.V. Shubin, S.V. Korenev, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 1, pp. 47–54.  相似文献   

12.
13.
The compounds (NH4)3[Ta(O2)4], K3[Ta(O2)4], Rb3[Ta(O2)4] and Cs3[Ta(O2)4] have been prepared and investigated by X-ray powder methods as well as Raman- and IR-spectroscopy. In the case of Rb3[Ta(O2)4] the structure has been solved from single crystal data. It is shown that all these compounds are isotypic and crystallize in the K3[Cr(O2)4] type (SG , No. 121). The infrared- and Raman spectra (recorded on powdered samples) are discussed with respect to the internal vibrations of the peroxo-group and the dodecahedral [Ta(O2)4]3− ion. Symmetry coordinates for the [Ta(O2)4]3− ion are given from which the vibrational modes of the O-O stretching vibrations of the O22− groups, the Ta-O stretching vibrations and the Ta-O bending vibrations are deduced.  相似文献   

14.
Single crystals of new oxyborates, Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3, were prepared at 1370 °C in air using B2O3 as a flux. They were colorless and transparent with block shapes. X-ray diffraction analysis of the single crystals revealed Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 to be isostructural. The X-ray diffraction reflections were indexed to the orthorhombic Pnma (No. 62) system with a=9.3682(3) Å, b=9.4344(2) Å, c=9.3379(3) Å and Z=4 for Mg5NbO3(BO3)3 and a=9.3702(3) Å, b=9.4415(3) Å, c=9.3301(2) Å and Z=4 for Mg5TaO3(BO3)3. The crystal structures of Mg5NbO3(BO3)3 and Mg5TaO3(BO3)3 are novel warwickite-type superstructures having ordered arrangements of Mg and Nb/Ta atoms. Polycrystals of Mg5NbO3(BO3)3 prepared by solid state reaction at 1200 °C in air showed broad blue-to-green emission with a peak wavelength of 470 nm under 270 nm ultraviolet excitation at room temperature.  相似文献   

15.
A new type of catalyst from supporting C60 on MoO3 and Al2O3 has been prepared. The effect of different order of impregnation and calcination atmosphere on catalyst are investigated by the solution test in toluene, UV-VIS spectroscopy and temperature programmed reduction (TPR). The results show that when the catalyst was prepared by supporting MoO3 on C60/Al2O3 and calcined in N2, there is a stronger interaction between C60, MoO3 and Al2O3, but when supporting C60 on MoO3/Al2O3, the interaction is relatively weak. We consider that in the former method a new complex, Mo–C60–O–Al, is formed.  相似文献   

16.
Laser excitation of equilibrium vapor mixtures ErCl3(s)-ACl3(g) (A = Al, Ga, In) at 475–1100 K gives rise both to resonance fluorescence from the f → f Er3+ transitions of the Er-Cl-A vapor complexes, and to Raman scattering due to the vibrational modes of the ACl3 vapor. The laser-induced fluorescence from the 4F92, 4S32 and 2H112 states has been investigated at different temperatures and excitation.  相似文献   

17.
This study concerns the coprecipitation of the PbCO3SrCO3 and PbCO3CaCO3 systems in different molar relationships carried out under the same experimental conditions as the PbCO3BaCO3 system studied previously. The precipitates obtained were studied by chemical analysis, thermogravimetry, differential thermal analysis and X-ray powder diffraction. It has been established that, for the PbCO3SrCO3 system, solid solutions are obtained under all the different experimental conditions and for the PbCO3CaCO3 system the precipitates obtained are always mixtures of PbCO3 and CaCO3.  相似文献   

18.
Reactions of interactions at the WO3|In2O3 and WO3|In6WO12 heterophase reaction interfaces, whose main product is In2(WO4)3, are studied by electrochemical methods for the first time ever. Due to a far greater n type conductance inherent in the initial substances, the reactions are a model object for the development of methodology of the electrochemical approach. Both reactions are discovered to proceed at the expense of the transport of components of WO3 and no evidence is discovered for the contribution of In3+ into diffusion and migration. Consisted data are obtained between the polarity of a spontaneously generated reaction difference of potentials and the direction of the field that accelerates the reaction: the current that is passed through electrochemical cells accelerates the reactions exclusively at the (−)-potential of a brick of WO3. A difference is discovered between the charge and mass transport paths—spontaneous and field-induced mass transport of WO3 or its components occurs via heterophase interfaces and adjacent areas and does not touch upon the In2(WO4)3 grains. Shown is the antibatic character of the behavior exhibited by dependences of identical properties of cells (potential drop across a cell) following a change in the dc polarity. A possible role of a reactionless electrosurface transport of WO3 in the mechanism of reaction and evolution of electrochemical properties of model electrochemical cells is demonstrated. The obtained data may or may not testify in favor of a hypothesis that presumes a prevailing role of the {WO4}2− mobility in the In2(WO4)3 structure. Original Russian Text ? A.Ya. Neiman, T.E. Kulikova, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 6, pp. 714–726. Based on the report delivered at the 8th International Meeting on Fundamental Problems of Solid-State Ionics, Chernogolovka (Russia), 2006.  相似文献   

19.
The formation process of LiNbO3 in the system Li2CO3Nb2O5 was discussed from the results of non-isothermal or isothermal TG experiments and X-ray analysis. The mixture Li2CO3 and Nb2O5 in mole ratios of 1:3, 1:1 or 3:1 was heated at a rate of 5°C min?1 or at various temperatures fixed in the range 475 to 677°C. If the system has a composition of Li2CO3 + 3Nb2O5 or 3Li2CO3 + Nb2O5, the reaction between Li2CO3 and Nb2O5 proceeds with CO2 evolution to form LiNbO3 at ca. 300–600°C, but Nb2O5 or Li2CO3 remains unreacted. A composition of Li2CO3 + Nb2O5 gives LiNbO3 at 300–700°C. The diffusion of Li2O through the layer of LiNbO3 is rate-controlling with an activation energy of 51 kcal mol?1. The reaction between LiNbO3 and Nb2O5 gives LiNb3O8 at 600–700°C. At 700–800°C, a slight formation of Li3NbO4 occurs by the reaction between LiNbO3 and Li2O at the outer surface of LiNbO3 and the Li2O component of Li3NbO4 diffuses toward the boundary of the LiNb3O8 layer through the LiNbO3 layer. The single phase of LiNbO3 is formed above 850°C.  相似文献   

20.
A new radical observed at low temperature in γ-irradiated K2(UO2)(NO3)4 single crystals has been tentatively assigned to a hitherto unknown oxyanion radical, NO2+3. The assignment and the lack of 14N hyperfine structure, together with the g factors which are lower than the free-spin value, are discussed in terms of an orbital level scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号