首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2O + Ni(NO3)2 binary system were investigated in the temperature range from −25 °C to 55 °C. The solid-liquid equilibria of the ternary system H2O + Fe(NO3)3 + Ni(NO3)2 were studied using a synthetic method based on conductivity measurements. Tow isotherms were established at 0 °C and 30 °C, and the appearing stable solid phases are iron nitrate nonahydrate (Fe(NO3)3·9H2O), iron nitrate hexahydrate (Fe(NO3)3·6H2O), nickel nitrate hexahydrate (Ni(NO3)2·6H2O) and nickel nitrate tetrahydrate (Ni(NO3)2·4H2O).  相似文献   

2.
Tren amine cations [(C2H4NH3)3N]3+ and zirconate or tantalate anions adopt a ternary symmetry in two hydrates, [H3tren]2·(ZrF7)2·9H2O and [H3tren]6·(ZrF7)2·(TaOF6)4·3H2O, which crystallise in R32 space group with aH = 8.871 (2) Å, cH = 38.16 (1) Å and aH = 8.758 (2) Å, cH = 30.112 (9) Å, respectively. Similar [H3tren]2·(MX7)2·H2O (M = Zr, Ta; X = F, O) sheets are found in both structures; they are separated by a water layer (Ow(2)-Ow(3)) in [H3tren]2·(ZrF7)2·9H2O. Dehydration of [H3tren]2·(ZrF7)2·9H2O starts at room temperature and ends at 90 °C to give [H3tren]2·(ZrF7)2·H2O. [H3tren]2·(ZrF7)2·H2O layers remain probably unchanged during this dehydration and the existence of one intermediate [H3tren]2·(ZrF7)2·3H2O hydrate is assumed. Ow(1) molecules are tightly hydrogen bonded with -NH3+ groups and decomposition of [H3tren]2·(ZrF7)2·H2O occurs from 210 °C to 500 °C to give successively [H3tren]2·(ZrF6)·(Zr2F12) (285 °C), an intermediate unknown phase (320 °C) and ZrF4.  相似文献   

3.
The solid-liquid equilibria of the quasi-quaternary system H2O-Zn(NO3)2·6H2O-Cu(NO3)2·3H2O-NH4NO3 were studied at 25°C by using a synthetic method based on conductivity measurements. Three isoplethic sections has been established at 25°C and the stable solid phases which appear are: NH4NO3(IV), Zn(NO3)2·6H2O, anhydrous Cu(NO3)2, Cu(NO3)2·3H2O and metastable Cu(NO3)·2.5H2O. Neither double salts, nor mixed crystals are observed at these temperatures and composition range.  相似文献   

4.
The N4O3 coordinating heptadentate imidazolidinyl phenolate ligand, H3L (2-(2′-hydroxyphenyl)-1,3-bis[4-(2-hydroxyphenyl)-3-azabut-3-enyl]-1,3-imidazolidine) forms with Cu(II) a rare aqua bridged complex [{Cu2(μ-L)(μ-H2O)}2](ClO4)2 · 4.5H2O (1 · 4.5H2O). Complex 1 · 4.5H2O contains two crystallographically different but chemically equivalent dinuclear [Cu2(μ-L)(μ-H2O)]+ cationic units in the asymmetric unit. The copper atoms of each dinuclear unit are in a distorted square-pyramidal environment and are held together by phenolate, imidazolidinyl and aqua bridges with a Cu···Cu separation of av. 3.34 Å. The compound exhibits a very weak antiferromagnetic exchange interaction (J = −0.77 cm−1, ? = J?1?2) between the two copper(II) (S = 1/2) ions. The 1H NMR spectrum of the complex shows a total of 17 hyperfine shifted peaks, as expected from the idealized Cs symmetry of the compound, spread over a very large window of chemical shift, spanning about 250 ppm. The complex, having an appropriate intermetallic separation for catechol binding, shows catecholase like activity in MeCN at 25 °C, with the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylquinone (3,5-DTBQ).  相似文献   

5.
The formation of maghemite, γ-Fe2O3 nanoparticles has been studied by in situ X-ray powder diffraction. The maghemite was formed by thermal decomposition of an amorphous precursor compound made by reacting lauric acid, CH3(CH2)10COOH with Fe(NO3)3·9H2O. It has been shown that cubic γ-Fe2O3 was formed directly from the amorphous precursor and that vacancy ordering starts about 45 min later at 305 °C resulting in a tripled unit cell along the c-axis. The kinetics of grain growth was found to obey a power law with growth exponents n equal to 0.136(6) and 0.103(5) at 305 and 340 °C, respectively. Particles with average sizes of 12 and 13 nm were obtained in 86 and 76 min at 305 and 340 °C, respectively. The structure of cubic and vacancy ordered phases of γ-Fe2O3 was studied at 305 °C by Rietveld refinements.  相似文献   

6.
The thermal decomposition course of europium acetate tetrahydrate (Eu(CH3COO)3·4H2O) was probed on heating up to 1000 °C in a dynamic atmosphere of air by thermogravimetry and differential thermal analysis. The solid- and gas-phase decomposition products were identified by X-ray diffractometry, ex- and in situ infrared spectroscopy and mass spectrometry. Results obtained showed the acetate to dehydrate stepwise at 145-283 °C, and then decompose stepwise to yield eventually cubic-Eu2O3 at ≥663 °C encompassing the formation of intermediate oxycarbonate (Eu2O(CO3)2/Eu2O2(CO3) solid products (at 347-466 °C)) and H2O, (CH3)2CO and CO2 as primary gaseous products. A considerable enhancement of the production of the primary gas phase products at 400-450 °C and the emergence of (CH3)2CCH2, CH4 and CO molecules in the gas phase are ascribed to reactions occurring at the gas/solid interface at the expense of some of the primary products. These interfacial activities impart application-worthy adsorptive and catalytic functions for the associated solid products.  相似文献   

7.
The thermal decomposition of syngenite, K2Ca(SO4)2·H2O, formed during the treatment of liquid manure has been studied by thermal gravimetric analysis, differential scanning calorimetry, high temperature X-ray diffraction (XRD) and infrared emission spectroscopy (IES). Gypsum was found as a minor impurity resulting in a minor weight loss due to dehydration around 100 °C. The main endothermic dehydration and decomposition stage of syngenite to crystalline K2Ca2(SO4)3 and amorphous K2SO4 is observed around 200 °C. The reaction involves a solid-state re-crystallisation, while water and the K2SO4 diffuse out of the existing lattice. The additional weight loss steps around 250 and 350 °C are probably due to presence of larger syngenite particles, which exhibit slower decomposition due to the slower diffusion of water and K2SO4 out of the crystal lattice. A minor endothermic sulphate loss around 450 °C is not due to the decomposition of syngenite or its products or of the gypsum impurity. The origin of this sulphate is not clear.  相似文献   

8.
Crystalline cerium oxide carbonate hydrate (Ce2O(CO3)2·H2O) was grown in aqueous solutions at a low temperature of 80 °C under ambient pressure. When cerium nitrate was used as a starting material, large Ce2O(CO3)2·H2O particles were precipitated through homogeneous nucleation and subsequent fast crystal growth. In contrast, the usage of cerium chloride was found to promote the preferential precipitation of Ce2O(CO3)2·H2O on foreign substrates through heterogeneous nucleation and slow crystal growth. This phenomenon was applied to a chemical bath deposition of Ce2O(CO3)2·H2O films. Immersion of glass substrates in the solution at 80 °C for typically 24 h resulted in formation of solid films with a unique morphology like a micrometer-scale brush. It was also found that samarium could be incorporated into Ce2O(CO3)2·H2O during the crystal growth in the solutions, as evidenced by characteristic photoluminescence of Sm3+ in heating products of CeO2. These results suggest that rare-earth oxide carbonate hydrates with a variety of compositions and morphologies can be synthesized from the aqueous solutions.  相似文献   

9.
The rare-earth dicarboxylate hybrid materials [Ce(H2O)]2[O2C(CH2)2CO2]3 ([Ce(Suc)]) and [Sm(H2O)]2[O2C(CH2)2CO2]3·H2O ([Sm(Suc)]) have been hydrothermally synthesized (200°C, 3 days) under autogenus pressure. [Ce(Suc)] is triclinic, a=7.961 (3) Å, b=8.176 (5) Å, c=14.32 (2) Å, α=97.07° (7), β=96.75° (8), γ=103.73° (6), and z=2. The crystal structure of this compound has been determined using 3120 unique single crystal data. The final refinements let the agreement factors R1 and wR2(F2) converge to 0.0138 and 0.0363, respectively. [Ce(Suc)] is built up from infinite chains of edge-sharing nine-fold coordinated cerium atoms running along [100]. These chains are interconnected by the carbon atoms of the succinate anions, leading to a three-dimensional hybrid framework. The cell constants of [Sm(Suc)], isotypic with monoclinic C2/c [Pr(H2O)]2[O2C(CH2)2CO2]3·H2O ([Pr(Suc)]), were refined starting from X-ray powder data: a=20.275 (3) Å, b=7.919 (6) Å, c=14.130 (3) Å, and β=121.45° (1). Despite its lower symmetry, [Ce(Suc)] presents an important structural filiation with [Sm(Suc)]  相似文献   

10.
The reactions of 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine with CuCl2 · 2H2O, Cu(NO3)2 · 3H2O and CuSO4 · 5H2O have been examined, and four [CuCl2(dppt)] (1), [CuCl2(dppt)2] · 2MeOH (2), [Cu(dppt)2(H2O)2](NO3)2 (3) and [Cu(SO4)(dppt)(H2O)]n · nH2O (4) complexes have been obtained. All the complexes have been structurally and spectroscopically characterized, and compound 4 has been additionally studied by magnetic measurements. The electronic structure of 1 has been calculated with the density functional theory (DFT) method, and the time-dependent DFT calculations have been employed to calculate the electronic spectrum of 1.  相似文献   

11.
Six domains appear in the 2D composition diagram of the Al(OH)3-dien-HFaq.-ethanol system at 190 °C and [Al3+] = 1 mol L−1 under microwave heating. Four organic-inorganic fluorides crystallise: [H3dien]·(AlF6) (P21/c, Z = 4), [H3dien]2·(AlF5(H2O))3·2H2O (P21/n, Z = 4), [H3dien]·(AlF6)·2H2O, which was previously known, and [H3dien]2·(Al4F18) (C2/c, Z = 4). A new (Al4F18)6− polyanion, which results from the tetrahedral association of four AlF6 octahedra linked by corners, is evidenced in [H3dien]2·(Al4F18).  相似文献   

12.
The interaction of diethyl (pyridyn-2-ylmethyl)phosphonate (2-pmpe) with Cu(NO3)2 · 6H2O leads to a partial hydrolysis of the starting ligand and formation of the compound of the formula Cu2(2-mpmpe)2(H2O)2(NO3)2, where 2-mpmpe = monoethyl (pyridyn-2-ylmethyl)phosphonate. The crystal and molecular structure of a copper(II) compound was determined by single X-ray diffraction method. Its structure consists of five-coordinated in distorted square planar geometry (CuNO4 chromophore) copper(II) ions doubly bridged by OPO from phosphonate. The Cu?Cu distance is 4.69 Å. The crystal packing is determined by the interdinuclear hydrogen bond system, which leads to a three-dimensional (3D) H-bonds network. The compound was characterized by infrared, ligand field, EPR spectroscopy, and magnetic studies. The magnetic properties of the title compound investigated over the 1.8–300 K, revealed the occurrence of a weak ferromagnetic coupling through phosphonate bridge (J = 1.86 cm−1) and interdimer superexchange coupling through H-bond network (zJ′ = −0.17 cm−1). Spectroscopic and magnetic properties are presented in the light of crystal structure.  相似文献   

13.
By hydrothermal reaction of In2O3 with H2C2O4·2H2O in the presence of H3BO3 at 155 °C, an open-framework three-dimensional indium oxalate of formula [In(OH)(C2O4)(H2O)]3·H2O (1) has been obtained. The compound crystallizes in the trigonal system, space group R3c with , , , Z=6, R1=0.0352 at 298 K. The small pores in 1 are filled with water molecules. It loses its filled water at about 180 °C without the change of structure, then the bounded water at 260 °C, and completely decompounds at 324 °C. The residue is confirmed to be In2O3.  相似文献   

14.
A structurally distinct, multi-copper(II)-substituted silicotungstate K3H4Cu0.5{Cu[Cu7.5Si2W16O60(H2O)4(OH)4]2} · 9H2O (1) has been synthesized and characterized by FT-IR spectroscopy, elemental analysis, variable-temperature magnetic measurements, electron spin resonance, and X-ray diffraction. Green crystalline plates of 1 were obtained by the reaction of K8[γ-SiW10O36] · 12H2O with 8 equiv. of Cu(II) in a 50% ethylene glycol solution. A cationic copper center connects the terminal oxygen atoms of neighboring polyanions, resulting in a one-dimensional structure. Magnetic susceptibility measurements indicate weak ferromagnetic superexchange between the Jahn–Teller-distorted S = 1/2 Cu(II) centers.  相似文献   

15.
All the geometric isomers of the benzoate derivatives, XC6H4CO2 (X=F, Cl, Br, OH, OCH3, NO2, CO2CH3, NH2, N(CH3)2) can be intercalated into the layered double hydroxide [LiAl2(OH)6]Cl·H2O in 50% (v/v) water/ethanol solution at 80 °C to give fully anion-exchanged first stage intercalation compounds [LiAl2(OH)6]G·yH2O (G=a substituted benzoate). The observed interlayer separations of the intercalates vary from 14.3 Å for [LiAl2(OH)6](4-nitrobenzoate)·2H2O to 20.6 Å for [LiAl2(OH)6](3-dimethylaminobenzoate)·3H2O. Competitive intercalation studies using mixtures of isomeric benzoates showed that the 4-isomers and 2-isomers are the most and the least preferred anions, respectively. Comparing the calculated dipole moments of the anions with the observed isomeric intercalation preferences suggests that dipole moment may be a good general index for the preference; however, it should be remembered that the bulkiness and electronegativity of the other substituent could be very important factors that affect the preferential intercalation.  相似文献   

16.
A new macrocyclic ligand, 1,3,5-triaza-2,4:7,8:16,17-tribenzo-9,12,15-trioxacyclooktadeca-1,5-dien (L) was synthesized by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane. Then, its Cu(II), Ni(II), Pb(II), Co(III) and La(III) complexes were synthesized by template effect by reaction of 2,6-diaminopyridine and 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and Cu(NO3)2 · 3H2O, Ni(NO3)2 · 6H2O, Pb(NO3)2, Co(NO3)2 · 6H2O, La(NO3)3 · 6H2O, respectively. The ligand and its metal complexes have been characterized by elemental analysis, IR, 1H and 13C NMR, UV–Vis spectra, magnetic susceptibility, thermal gravimetric analysis, conductivity measurements, mass spectra and cyclic voltammetry. All complexes are diamagnetic and Cu(II) complex is binuclear. The Co(II) was oxidized to Co(III). The comparative electrochemical studies show that the nickel complex exhibited a quasi-reversible one-electron reduction process while copper and cobalt complexes gave irreversible reduction processes in DMSO solution.  相似文献   

17.
The lanthanide sulphate octahydrates Ln2(SO4)3·8H2O (Ln=Ho, Tm) and the respective tetrahydrate Pr2(SO4)3·4H2O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln2(SO4)3·8H2O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, aHo=13.4421(4) Å, bHo=6.6745(2) Å, cHo=18.1642(5) Å, βHo=102.006(1) Å3 and aTm=13.4118(14) Å, bTm=6.6402(6) Å, cTm=18.1040(16) Å, βTm=101.980(8) Å3), Pr2(SO4)3·4H2O adopts space group P21/n (a=13.051(3) Å, b=7.2047(14) Å, c=13.316(3) Å, β=92.55(3) Å3). The vibrational and optical spectra of Ho2(SO4)3·8H2O and Pr2(SO4)3·4H2O are also reported.  相似文献   

18.
Solution combustion synthesis of calcium zirconate, CaZrO3, powders   总被引:1,自引:0,他引:1  
Single-phase CaZrO3 powder was prepared by heating at 300 °C an aqueous solution of Ca(NO3)2, ZrO(NO3)2 and β-C3H7NO2 (molar ratio=3:3:4). TG-DTA analysis indicated that an intense exothermic reaction occurred at 255 °C, which lead to the formation of a voluminous white powder. No additional annealing was required, as pure crystalline CaZrO3 resulted directly from the combustion reaction. Although no advanced milling was performed, the specific surface area of the powder was 21.5 m2/g. The average crystallite size of CaZrO3 was 23.9 nm. After sintering in air at 1400 °C for 2 h, the pellets - shaped by uniaxial pressing at 200 MPa - reached 95% of the theoretical density, had no open pores and were slightly translucent.  相似文献   

19.
Two new vanadium squarates have been synthesized, characterized by infrared and thermal behavior and their structures determined by single crystal X-ray diffraction. Both structures are made of discrete, binuclear vanadium entity but in 1, [V(OH)(H2O)2(C4O4)]2·2H2O the vanadium atom is trivalent and the entity is neutral while in 2, (NH4)[(VO)2(OH)(C4O4)2(H2O)3]·3H2O, the vanadium atom is tetravalent and the entity is negatively charged, balanced by the presence of one ammonium ion. Both molecular anions are bridged by two terminal μ2 squarate ligands. 1 crystallizes in the triclinic system, space group P-1, with lattice constants a=7.5112(10) Å, b=7.5603(8) Å, c=8.2185(8) Å, α=106.904(8)°, β=94.510(10)°, γ=113.984(9)° while 2 crystallizes in the monoclinic system, space group C2/c, with a=14.9340(15) Å, b=6.4900(9) Å, c=17.9590(19) Å and β=97.927(12)°. From the magnetic point of view, V(III) binuclear species show ferromagnetic interactions at low temperatures. However, no anomalies pointing to magnetic ordering are observed down to 2 K.  相似文献   

20.
[Cu(H2L)(PPh3)2]NO3 · 0.5H2O (2) and [Ag(H2L)(PPh3)2]NO3 · 0.5H2O (3) complexes of a new flexible thioamide ligand; N,N′-ethane-1,2-bis(4-methoxyphenyl)carbothioamide H2L (1) have been synthesized using PPh3 as a coligand. The synthesized compounds have been characterized with the help of elemental analyses, IR, 1H, 13C and 31P NMR spectroscopy. The ligand and its Cu(I) complex have been studied by single crystal X-ray crystallography. The ligand acts as a neutral S-donor and forms a nine-membered chelate ring in [Cu(H2L)(PPh3)2]NO3 · 0.5H2O. The molecular packing is stabilized by an anionic cavity formed by intermolecular hydrogen bonding between the basal plane of the complex molecule and the nitrate ions. The square shaped columnar channel has dimensions of 5.489(25) [N(11)–H(11A)?O(13)?H(21A)N(21)] × 3.693(7) [N(11)–C(11)–C(21)–N(21)] Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号