首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intestine proteases of Nile tilapia (Oreochromis niloticus) were partially purified by heat treatment (purification factor of 3.5, enzyme activity remained almost constant) to reach the maximum activity and stability within an alkaline pH range of 7.2–11.0. The optimum temperature and stability over a 120 min period were found to be at 55°C and at 35–45°C, respectively. The proteases’ activity was not affected by a 1 vol. % saponin surfactant, inactivated by 0.01 g mL?1 sodium dodecylsulphate after 120 min, and it remained stable for 30 min in a 5 vol. % and 10 vol. % hydrogen peroxide solutions. The proteases were slightly activated by Ca2+, Mg2+, and K+ and the substrate most effectively hydrolysed was casein (40.0 U mg?1). A 24 full factorial design used to evaluated the influence of independent variables showed that the enzyme extract, detergent concentration and the incubation time had a significant influence on the enzymatic activity. The best conditions to be used concerning detergent additive were found with 0.3 mg mL?1 of protein and 3.0 mg mL?1 of detergent for 30 min in the presence of Astrus® detergent.  相似文献   

2.
The current increase in amount of shrimp wastes produced by the shrimp industry has led to the need in finding new methods for shrimp wastes disposal. In this study, an extracellular organic solvent- and oxidant-stable metalloprotease was produced by Bacillus cereus SV1. Maximum protease activity (5,900 U/mL) was obtained when the strain was grown in medium containing 40 g/L shrimp wastes powder as a sole carbon source. The optimum pH, optimum temperature, pH stability, and thermal stability of the crude enzyme preparation were pH 8.0, 60 °C, pH 6–9.5, and <55 °C, respectively. The crude protease was extremely stable toward several organic solvents. No loss of activity was observed even after 60 days of incubation at 30 °C in the presence of 50% (v/v) dimethyl sulfoxide and ethyl ether; the enzyme retained more than 70% of its original activity in the presence of ethanol and N,N-dimethylformamide. The protease showed high stability toward anionic (SDS) and non-ionic (Tween 80, Tween 20, and Triton X-100) surfactants. Interestingly, the activity of the enzyme was significantly enhanced by oxidizing agents. In addition, the enzyme showed excellent compatibility with some commercial liquid detergents. The protease of B. cereus SV1, produced under the optimal culture conditions, was tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio E/S of 20 was about 88%. The novelties of the SV1 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.  相似文献   

3.
This study describes the characterization and optimization of medium components for an extracellular detergent, surfactant, organic solvent and thermostable serine alkaline protease produced by alkaliphilic Bacillus pumilus MCAS8 strain isolated from Pulicat lake sediments, Tamil Nadu, India. The strain yielded maximum protease (2,214?U/ml) under optimized conditions: carbon source, citric acid??1.5?% (w/w); inducer, soyabean meal??2?% (w/w); pH?11.0; shaking condition 37?°C for 48?h. The enzyme had pH and temperature optima of 9.0 and 60?°C, respectively. The enzyme displayed the molecular mass of 36?kDa in sodium dodecyl sulphate?Cpolyacrylamide gel electrophoresis study and exhibited activity at a wide range of pH (6.0?C11.0) and thermostability (20?C70?°C). More than 70?% residual activity was observed when the enzyme was incubated with dithiothreitol, ethylenediaminetetraacetic acid, ethylene glycol tetraacetic acid and H2O2 for 30?min. The protease activity was also enhanced by divalent cations such as Ba2+, Ca2+ and Mg2+ and was strongly inhibited by Fe2+, Zn2+, Sr2+, Hg2+ and urea. The enzyme retained more than 50?% of its initial activity after pre-incubation for 1?h in the presence of 5?% (v/v) organic solvents such as dimethyl sulphoxide and acetone. The protease could hydrolyse various native proteinaceous substrates (1?%?w/v) such as bovine serum albumin, casein, skim milk, gelatine, azocasein and haemoglobin. Wash performance analysis of enzyme revealed that it could effectively remove blood stains from the cotton fabric, thus making it suitable to use as an effective detergent additive. The protease enzyme also exhibited promising result in the dehairing of goat skin. The potency of the eco-friendly enzyme without using any chemicals against washing and dehairing showed that the enzyme could be used for various industrial applications.  相似文献   

4.
The purified acidic α-amylase of Bacillus acidicola is a monomer of 66.0 kDa, optimally active at pH 4.0 and 60 °C. The enzyme is Ca2+ independent with T 1/2 for 18 min at 80 °C. The K m, V max, and catalytic efficiency (k cat/K m) of the enzyme are 1.6 mg mL?1, 23.8 μmol mg?1 min?1, and 981 μmol s?1, respectively. Among detergents, Tween 20, 40, and 80 stimulated enzyme activity, whereas sodium dodecyl sulfate and Triton X-100 inhibited even at low concentration. EGTA has not affected the activity, whereas EDTA β-mercaptoethanol, iodoacetic acid, and Dithiothreitol exhibited a slight inhibitory action. Phenylmethanesulfonyl fluoride, N-bromosuccinimide, and Hg2+ strongly inhibited enzyme activity. The experimental activation energy and temperature quotient are 50.12 kJ mol?1 and 1.37. When thermodynamic parameters (ΔH and ΔS) of the enzyme have been determined at different temperatures, ΔG is positive suggesting that the enzyme is thermostable. The enzyme hydrolyzes raw starches, and therefore, the enzyme finds application in raw starch saccharification at sub-gelatinization temperatures that saves energy needed for gelatinization of raw starch at 105 °C.  相似文献   

5.
Studies on lipase production and characterization were carried out with a bacterial strain Staphylococcus arlettae JPBW-1 isolated from rock salt mine, Darang, HP, India. Higher lipase activity has been obtained using 10 % inoculum with 5 % of soybean oil as carbon source utilizing a pH 8.0 in 3 h at 35 °C and 100 rpm through submerged fermentation. Partially purified S. arlettae lipase has been found to be active over a broad range of temperature (30–90 °C), pH (7.0–12.0) and NaCl concentration (0–20 %). It has shown extreme stability with solvents such as benzene, xylene, n-hexane, methanol, ethanol and toluene up to 30 % (v/v). The lipase activity has been found to be inhibited by metal ions of K+, Co2+ and Fe 2+ and stimulated by Mn2+, Ca2+ and Hg2+. Lipase activity has been diminished with denaturants, but enhanced effect has been observed with surfactants, such as Tween 80, Tween 40 and chelator EDTA. The K m and V max values were found to be 7.05 mM and 2.67 mmol/min, respectively. Thus, the lipase from S. arlettae may have considerable potential for industrial application from the perspectives of its tolerance towards industrial extreme conditions of pH, temperature, salt and solvent.  相似文献   

6.
Protease inhibitors can be versatile tools mainly in the fields of medicine, agriculture and food preservative applications. Fungi have been recognized as sources of protease inhibitors, although there are only few such reports on mushrooms. This work reports the purification and characterization of a trypsin inhibitor from the fruiting body of edible mushroom Pleurotus floridanus (PfTI) and its effect on the activity of microbial proteases. The protease inhibitor was purified up to 35-fold by DEAE-Sepharose ion exchange column, trypsin-Sepharose column and Sephadex G100 column. The isoelectric point of the inhibitor was 4.4, and its molecular mass was calculated as 37 kDa by SDS-PAGE and 38.3 kDa by MALDI-TOF. Inhibitory activity confirmation was by dot-blot analysis and zymographic activity staining. The specificity of the inhibitor toward trypsin was with Ki of 1.043?×?10?10 M. The inhibitor was thermostable up to 90 °C with maximal stability at 30 °C, active over a pH range of 4–10 against proteases from Aspergillus oryzae, Bacillus licheniformis, Bacillus sp. and Bacillus amyloliquefaciens. Results indicate the possibility of utilization of protease inhibitor from P. floridanus against serine proteases.  相似文献   

7.
The present study deals with the characterization of halotolerant protease produced by Bacillus aquimaris VITP4 strain isolated from Kumta coast, Karnataka, India. The studies were performed at 40 °C and pH 8 in Tris buffer. Metal ions such as Mn2+ and Ca2+ increased the proteolytic activity of the enzyme by 34 and 30 %, respectively, at 10 mM concentration. Cu2+ at 1 mM concentration was found to enhance the enzyme activity by 16 %, whereas inhibition was observed at higher concentration (>5 mM). Slight inhibition was observed even with lower (>1 mM) concentrations of Zn2+, Hg2+, Fe3+, Ni2+, and Co2+.The activity of protease was completely inhibited by phenylmethylsulfonyl fluoride, indicating that the VITP4 protease is a serine protease. The presence of ethylenediaminetetraacetic acid and 1,10-phenanthroline (>5 mM) moderately inhibited the activity, suggesting that the enzyme is activated by metal ions. The protease was purified to homogeneity with a purification fold of 15.7 with ammonium sulfate precipitation and 46.65 with gel filtration chromatography using Sephadex G-100, resulting in a specific activity of 424?±?2.6 U mg?1. The VITP4 protease consists of a single polypeptide chain with a molecular mass of 34.7 kDa as determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization–time of flight. Among the different substrates used (casein, egg albumin, gelatin, and bovine serum albumin), the activity was higher with casein with V max, K m, and k cat values of 0.817 mg ml min?1, 0.472 mg ml?1, and 2.31 s?1, respectively. Circular dichroism studies revealed that the VITP4 protease has a predominantly β-sheet structure (51.6 %) with a temperature for half denaturation of 85.8 °C in the presence of 1 mM CaCl2. Additionally, the VITP4 protease was found to retain more than 70 % activity in the presence of 10 mM concentration of different detergents (CTAB, urea, and sodium dodecyl sulfate) and surfactants (Triton X-100, Tween-20, and Tween-80), and the results of wash performance test with various commercial detergents confirmed that it can be used in detergent formulations.  相似文献   

8.
Thermal inactivation of a keratinase produced by Purpureocillium lilacinum LPSC #876 was kinetically investigated using several enzyme inactivation models at the temperature range of 50–65 °C. Among the models studied, the Weibull distribution was the best model that describes the residual activity of P. lilacinum keratinase after heat treatment over the selected temperatures. The stabilising effect of metal ions (Ca2+ or Mg2+, 5 mmol l?1) or polyols (propylene glycol and glycerol, 10 % v/v) was investigated, showing that the presence of Ca2+ increases the enzyme stability significantly. Conforming to the increased Ca2+ concentration, thermal stability of the enzyme also increased, with 10 mM of Ca2+ being the concentration of metal in which the enzyme retained 100 % of its original activity after being incubated for 1 h at 55 °C. The effects of temperature on Weibull equation parameters and on the characteristics of the inactivation curves were evaluated. In the absence of any additives (control), the reliable time (t R) of the keratinase, analogous to D value, ranged from 484.16 to 63.67 min, while in the presence of Ca2+ the t R values ranged from 6,221 to 414.95 min at 50–65 °C. P. lilacinum keratinase is a potentially useful biocatalyst, and therefore, kinetic modelling of thermal inactivation addresses an important topic for its application in various industrial processes.  相似文献   

9.
Alkaline proteases from the viscera of the striped seabream (Lithognathus mormyrus) were extracted and characterized. Interestingly, the crude enzyme was active over a wide range of pH from 6.0 to 11.0, with an optimum pH at the range of 8.0–10.0. In addition, the crude protease was stable over a broad pH range (5.0–12.0). The optimum temperature for enzyme activity was 50 °C. The crude alkaline proteases showed stability towards various surfactants and bleach agents and compatibility with some commercial detergents. It was stable towards several organic solvents and retained more than 50% of its original activity after 30 days of incubation at 30 °C in the presence of 25% (v/v) dimethyl sulfoxide, N,N-dimethylformamide, diethyl ether, and hexane. The crude enzyme extract was also tested for shrimp waste deproteinization in the preparation of chitin. The protein removal with a ratio enzyme/substrate of 10 was about 79%.  相似文献   

10.
Two Bacillus sp. strains, HR-08 and KR-8102, isolated from soil of the west and north parts of Iran were screened on gelatin agar medium for their ability to produce alkaline protease. The enzymes were active in a wide pH range (6.0–11.0) and stable in the alkaline range (7.0–12.0). The optimum temperatures for the protease from HR-08 and KR-8102 were 65 and 50°C, respectively. The irreversible thermoinactivation of HR-08 and KR-8102 proteases showed that the stability of HR-08 enzyme was higher than that of KR-8102 and the half-lives of these enzymes were 95 and 32 min at 50°C, respectively. In the presence of 10 mM Ca2+, HR-08 retained 100, 90, and 20% of its initial activity after heating for 30 min at 50, 60, and 70°C, respectively. Enzymes were inhibited by phenylmethylsulfonyl fluoride and iodoacetate. After inhibition by iodoacetate, both enzymes were reactivated by dithiothreitol. These data show that the enzymes seem to be thiol-dependent serine alkaline proteases. The enzymes especially from HR-08 were stable in the presence of H2O2, surfactants, and local detergents; their activities were enhanced in the presence of 5 mM Fe2+; and the presence of 5mM metal ions such as Mg2+, Cu2+, and Mn2+ produced almost no effect.  相似文献   

11.
A bacterial strain isolated from soil and identified as Enterobacter cloacae had been found to be capable of producing both intra and extracellular β-d-galactosidase.The intracellular enzyme was thermostable and its optimum temperature, pH and time for enzyme—substrate reaction were found to be 50?°C, 9.0 and 5 min respectively, using ONPG as substrate. The maximum β-galactosidase production in shake flask was achieved at 30?°C, pH 7.0, incubation time 72 h using 50 ml medium in 250 ml Erlenmeyer flask. Only Mg2+ stimulated the activity of enzyme. Cetyl trimethyl ammonium bromide showed stimulatory effect on catalytic activity of the enzyme whereas EDTA inhibited enzyme activity. The enzyme retained its activity upto 55?°C after incubating at that temperature for 1 h.The maximum activity of crude intracellular enzyme was 14.35 IU/mg of protein. The K m and V max values of β-galactosidase using ONPG as substrate at 50?°C were 2.805 mM and 37.45?×?10?3?mM/min/mg, respectively.  相似文献   

12.
The reaction of thiamine chloride hydrochloride with a solution of palladium chloride in hydrochloric acid gave a protonated thiamine salt [HTA]2[PdCl4]Cl2 · 2H2O (I) (TA is 4-methyl-3-[(2??-methyl-4??-amino-3??,4??-dihydropyrimidinyl-5??)methyl]-5-(2-hydroxyethyl)thiazolium cation, C12H16N3O2S). The crystal structure of I was determined by X-ray diffraction. The crystals are triclinic: a = 11.459(8) ?, b = 12.239(8) ?, c = 6.910(1) ?, ?? = 103.24(3)°, ?? = 76.95(3)°, ?? = 106.04(3)°, Z = 2, space group P $\bar 1$ . The structural units of I are doubly charged [HTA]2+ cations, [PdCl4]2? and Cl? anions, and crystallization water molecules combined by hydrogen bonds and electrostatic interactions. The planar thiazolium and pyrimidine rings are in the F conformation, ??t = 1.0°, ??p = ?86.6°, and the dihedral angle between the planes is 85.5°. The torsion angles of the hydroxyethyl group are as follows: C(9)C(10)C(11)O(1), 175.6°; S(1)C(9)C(10)C(11), 33.2°; it is involved in the hydrogen bond with the free Cl? anion. The sulfur atom forms a short (3.052 ?) intermolecular S-Cl contact with the chlorine atom of the [PdCl4]2? anion, which forms supramolecular chains.  相似文献   

13.
A 1,080-bp cDNA (CGMCC 2873) encoding of a cold-active lipase of Aspergillus fumigatus (AFL67) was cloned and expressed in Escherichia coli for the first time. The new lipase, AFL67, was one-step purified by 8.30 folds through Ni?CNTA affinity chromatography with a recovery of 86.8?%. The specific activity of purified AFL67 was 449?U?mg?1 on p-NP hexanoate. AFL67 preferentially hydrolyzed p-nitrophenyl esters of short- and medium-chain fatty acids, with p-nitrophenyl hexanoate the maximum. The optimum temperature and pH was 15?°C and 7.5, respectively. The purified AFL67 was stable at 10?C25?°C for 30?min, and in the pH range of 6.0?C9.0 for 16?h (at 4?°C). Its activity was increased by 47 and 50?%, in the presence of 10?% (v/v) ethanol and isopropanol, respectively. The new lipase AFL67 highly enantioselectively deacylated (S)-??-acetoxyphenylacetic acid (APA) and o-Cl-APA, m-Cl-APA, and p-Cl-APA to (S)-mandelic acid and its derivates. These features render this cold-active novel lipase AFL67 attractive for biotechnological applications in the field of enantioselective synthesis of chiral mandelic acids, o-acylated mandelic acids, and their derivates and detergent additives.  相似文献   

14.
Carbonic anhydrases (CAs) have been given much attention as biocatalysts for CO2 sequestration process because of their ability to convert CO2 to bicarbonate. Here, we expressed codon-optimized sequence of ??-type CA cloned from Dunaliella species (Dsp-aCAopt) and characterized its catalyzing properties to apply for CO2 to calcite formation. The expressed amount of Dsp-aCAopt in Escherichia coli is about 50?mg/L via induction of 1.0?mM isopropyl-??-d-thiogalactopyranoside at 20?°C (for the case of intact Dsp-aCA, negligible). Dsp-aCAopt enzyme shows 47?°C of half-denaturation temperature and show wide pH stability (optimum pH 7.6/10.0). Apparent values of K m and V max for p-nitrophenylacetate substrate are 0.91?mM and 3.303?×?10?5???M?min?1. The effects of metal ions and anions were investigated to find out which factors enhance or inhibit Dsp-aCAopt activity. Finally, we demonstrated that Dsp-aCAopt enzyme can catalyze well the conversion of CO2 to CaCO3, as the calcite form, in the Ca2+ solution [8.9?mg/100???g (172?U/mg enzyme) with 10?mM of Ca2+]. The obtained expression and characterization results of Dsp-aCAopt would be usefully employed for the development of efficient CA-based system for CO2-converting/capturing processes.  相似文献   

15.
Bacillus sp. HR-08 screened from soil samples of Iran, is capable of producing proteolytic enzymes. 16S rDNA analysis showed that this strain is closely related to Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus mojavensis, and Bacillus atrophaeus. The zymogram analysis of the crude extract revealed the presence of five extracellular proteases. One of the proteases was purified in three steps procedure involving ammonium sulfate precipitation, DEAE-Sepharose ionic exchange and Sephacryl S-200 gel filtration chromatography. The molecular mass of the enzyme on SDS-PAGE was estimated to be 29 kDa. The protease exhibited maximum activity at pH 10.0 and 60 °C and was inhibited by PMSF but it was not affected by cysteine inhibitors, suggesting that the enzyme is a serine alkaline protease. Irreversible thermoinactivation of enzyme was examined at 50, 60, and 70 °C in the presence of 10 mM CaCl2. Results showed that the protease activity retains more than 80% and 50% of its initial activity after incubation for 30 min at 60 and 70 °C, respectively. This enzyme had good stability in the presence of H2O2, nonionic surfactant, and local detergents and its activity was enhanced in the presence of 20% of dimethyl sulfoxide (DMSO), dimethyl formamide (DMF) and isopropanol. The enzyme retained more than 90% of its initial activity after pre-incubation 1 h at room temperature in the presence of 20% of these solvents. Also, activation can be seen for the enzyme at high concentration (50%, v/v) of DMF and DMSO.  相似文献   

16.
Surfactant-stable keratinases with good properties are promising candidates for extensive applications in detergent industries. A novel fungal keratinase-producing strain, Gibberella intermedia CA3-1, is described in this study. The keratinase production medium was optimized and composed of 10 g L?1 of wool powder, 5 g L?1 of tryptone, 10 g L?1 of maltodextrin and 0.5 g L?1 of NaCl. Keratinase activity was increased up to 109 U mL?1 from 15 U mL?1 by culture optimization. The optimal reaction pH and temperature of the enzyme were 9.0 and 60°C, respectively. The keratinase activity could be improved by sodium dodecyl sulphate (SDS), and it remained stable in the presence of several surfactants and commercial detergents. G. intermedia keratinase was proved to completely remove blood stains from cotton cloth when combined with detergents. These findings indicate that this fungal keratinase is a promising catalyst for the application in detergent industry. To our knowledge, this is the first report on keratinase production by Gibberella genus.  相似文献   

17.
ApparentpK a values of thymol blue solubilized in Aerosol-OT reversed micelles in carbon tetrachloride at 25 °C were determined spectrophotometrically. The effects of the Aerosol-OT concentration and the (water)/(surfactant)R ratio were investigated. The apparentpK a values increase as a function of increasing (R). All the measuredpK a values are less than that in water. The decrease ranges from 1.23 units (detergent=0.4 M,R=1.39) to 0.42 units (Aerosol-OT=0.6 M,R=9,25). These results are rationalized in terms of decreased hydronium ion activity in the micellar core due to its binding to the detergent SO3 ? groups.  相似文献   

18.
The stabilization of olive recombinant hydroperoxide lyases (rHPLs) was investigated using selected chemical additives. Two rHPLs were studied: HPL full-length and HPL with its chloroplast transit peptide deleted (matured HPL). Both olive rHPLs are relatively stable at 4 °C, and enzyme activity can be preserved (about 100% of the rHPL activities are maintained) during 5 weeks of storage at ?20 or at ?80 °C in the presence of glycerol (10%, v/v). Among the additives used in this study, glycine (2.5% w/v), NaCl (0.5 M), and Na2SO4 (0.25 M) provided the highest activation of HPL full-length activity, while the best matured HPL activity was obtained with Na2SO4 (0.25 M) and NaCl (1 M). Although the inactivation rate constants (k) showed that these additives inactivate both rHPLs, their use is still relevant as they strongly increase HPL activity. Results of C6-aldehyde production assays also showed that glycine, NaCl, and Na2SO4 are appropriate additives and that NaCl appears to be the best additive, at least for hexanal production.  相似文献   

19.
Ni-phyllosilicate is difficultly formed on the surface of biogenic silica (E) extracted from equisetum fluviatile after calcination, resulting in poor catalytic activity at low temperature (<400 °C). In this work, the hydroxylation treatment of E was carried out to address the problem of lack of the surface silanol group and difficult formation of Ni-phyllosilicate, and the second metal Ru was added using a special procedure to further improve the activity of the catalyst. The surface silanol group concentration of silica (HE) was increased from 0.5 to 0.7 mmol/g after hydroxylation treatment, resulting in formation of more Ni-phyllosilicate with Ni content increase from 11.3 to 17.0 wt%. Considering the great gap of reduction difficulty of Ni-phyllosilicate (>800 °C) and RuO2 species (190 °C), RuO2 species was doped onto the 750 °C-pre-reduced Ni-phyllosilicate via impregnation, and metallic Ru together with Ni could be obtained simultaneously after reduction at a low temperature of 400 °C. The obtained Ru-modified Ni-phyllosilicate catalyst showed high CO2 conversion of 77.3% and CH4 selectivity of 96.4% with high turnover frequency (1.22 s?1, 180 °C) and low activation energy (71.25 kJ/mol). In situ Diffused Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) results revealed that more active formate intermediates (m-HCOO- and m-CO32?) result in high catalytic activity of the Ru-modified Ni-phyllosilicate catalyst. In addition, this catalyst exhibited high anti-sintering property, long-term stability, and hydrothermal stability under severe conditions owing to the Ni-phyllosilicate–based structure.  相似文献   

20.
A novel hybrid epoxy/nano CaCO3 composite matrix for catalase immobilization was prepared by polymerizing epoxy resin in the presence of CaCO3 nanoparticles. The hybrid support was characterized using scanning electron microscopy and Fourier transform infrared spectroscopy. Catalase was successfully immobilized onto epoxy/nano CaCO3 support with a conjugation yield of 0.67?±?0.01 mg/cm2 and 92.63?±?0.80 % retention of activity. Optimum pH and optimum temperature of free and immobilized catalases were found to be 7.0 and 35 °C. The value of K m for H2O2 was higher for immobilized enzyme (31.42 mM) than native enzyme (27.73 mM). A decrease in V max value from 1,500 to 421.10 μmol (min mg protein)?1 was observed after immobilization. Thermal and storage stabilities of catalase improved immensely after immobilization. Immobilized enzyme retained three times than the activity of free enzyme when kept at 75 °C for 1 h and the half-life of enzyme increased five times when stored in phosphate buffer (0.01 M, pH 7.0) at 5 °C. The enzyme could be reused 30 times without any significant loss of its initial activity. Desorption of catalase from the hybrid support was minimum at pH 7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号