首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The present paper deals with the analysis of boundary layer flow and heat transfer of a dusty fluid over a stretching sheet with the effect of non-uniform heat source/sink. Here we consider two types of heating processes namely (i) prescribed surface temperature and (ii) prescribed surface heat flux. The momentum and thermal boundary layer equations of motion are solved numerically using Runge Kutta Fehlberg fourth–fifth order method (RKF45 Method). The effects of fluid particle interaction parameter, Eckert number, Prandtl number, Number of dust particle and non-uniform heat generation/absorption parameter on temperature distribution are analyzed and also the effect of wall temperature gradient function and wall temperature function are tabulated and discussed.  相似文献   

2.
This paper investigates the problem of hydrodynamic boundary layer flow and heat transfer of a dusty fluid over an unsteady stretching surface.The study considers the effects of frictional heating(viscous dissipation) and internal heat generation or absorption.The basic equations governing the flow and heat transfer are reduced to a set of non-linear ordinary differential equations by applying suitable similarity transformations.The transformed equations are numerically solved by the Runge-Kutta-Fehlberg-45 order method.An analysis is carried out for two different cases of heating processes,namely,variable wall temperature(VWT) and variable heat flux(VHF).The effects of various physical parameters such as the magnetic parameter,the fluid-particle interaction parameter,the unsteady parameter,the Prandtl number,the Eckert number,the number density of dust particles,and the heat source/sink parameter on velocity and temperature profiles are shown in several plots.The effects of the wall temperature gradient function and the wall temperature function are tabulated and discussed.  相似文献   

3.
The two-dimensional quasi-steady conduction equation governing conduction controlled rewetting of an infinite cylinder with heat generation has been solved by Wiener–Hopf technique. The analytical solution yields the quench front temperature as a function of various model parameters such as Peclet number, Biot number and dimensionless heat generation rate. Also, the dry out heat generation rate is obtained by setting the Peclet number equal to zero, which gives the maximum permissible heat generation so as to prevent the dry out of the coolant.  相似文献   

4.
 The two-dimensional quasi-steady conduction equation governing conduction controlled rewetting of an infinite tube, with outer surface flooded and the inside surface subjected to a constant heat flux, has been solved by Wiener–Hopf technique. The solution yields the quench front temperature as a function of various model parameters such as Peclet number, Biot number and dimensionless heat flux. Also, the dryout heat flux is obtained by setting the Peclet number equal to zero, which gives the maximum sustainable heat flux to prevent the dryout of the coolant. Received on 6 September 2000 / Published online: 29 November 2001  相似文献   

5.
Using a quasi-static approach valid for Stefan numbers less than one, we derive approximate equations governing the movement of a phase change front for materials which generate internal heat. These models are applied for both constant surface temperature and constant surface heat flux boundary conditions, in cylindrical, spherical, plane wall and semi-infinite geometries. Exact solutions with the constant surface temperature condition are obtained for the steady-state solidification thickness using the cylinder, sphere, and plane wall geometries which show that the thickness depends on the inverse square root of the internal heat generation. Under constant surface heat flux conditions, closed form equations can be obtained for the three geometries. In the case of the semi-infinite wall, we show that for constant temperature and constant heat flux out of the wall conditions, the solidification layer grows then remelts.  相似文献   

6.
The present paper deals with the study of heat transfer characteristics in the laminar boundary layer flow of an incompressible viscous fluid over an unsteady stretching sheet which is placed in a porous medium in the presence of viscous dissipation and internal absorption or generation. Similarity transformations are used to convert the governing time dependent nonlinear boundary layer equations into a system of non-linear ordinary differential equations containing Prandtl number, Eckert number, heat source/sink parameter, porous parameter and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge-Kutta-Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the parameters which determine the velocity and temperature fields are discussed in detail.  相似文献   

7.
An analysis is performed for flow and heat transfer of a steady laminar boundary layer flow of an electrically conducting fluid of second grade in a porous medium subject to a transverse uniform magnetic field past a semi-infinite stretching sheet with power-law surface temperature or power-law surface heat flux. The effects of viscous dissipation, internal heat generation of absorption and work done due to deformation are considered in the energy equation. The variations of surface temperature gradient for the prescribed surface temperature case (PST) and surface temperature for the prescribed heat flux case (PHF) with various parameters are tabulated. The asymptotic expansions of the solutions for large Prandtl number are also given for the two heating conditions. It is shown that, when the Eckert number is large enough, the heat flow may transfer from the fluid to the wall rather than from the wall to the fluid when Eckert number is small. A physical explanation is given for this phenomenon.  相似文献   

8.
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Peclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Raut [14].  相似文献   

9.
A radiation and convection fluxmeter for high temperature applications   总被引:2,自引:0,他引:2  
Heat flux is an essential parameter for the diagnostic of thermal systems. In high temperature industrial environment, there are difficulties in measuring incident radiation heat flux as well as in differentiating between the convective and radiative components of heat flux on the heat transfer surface. A new method for heat flux measurement is being developed using a porous sensing element. The gas stream flowing through the porous element is used to measure the heat received by the sensor surface exposed to the hot gas environment. A numerical model of sensor with appropriate boundary condition has been developed in order to perform analysis of possible options regarding its design. The analysis includes: geometry of element, physical parameters of gas and solid and gas flow rate through the porous element. For the optimal selection of parameters, an experimental set-up was designed, including the sensor element with respective cooling and monitoring systems and a high temperature radiation source. The experimental set-up was used to obtain calibration curves for a number of sensors. The linear dependency of the heat flux and respective temperature difference of the gas were verified. The accuracy analysis of the sensor reading has proved high linearity of the calibration curve and accuracy of ±5%.  相似文献   

10.
This letter is concerned with the plane and axisymmetric stagnation-point flows and heat transfer of an electrically-conducting fluid past a stretching sheet in the presence of the thermal radiation and heat generation or absorption. The analytical solutions for the velocity distribution and dimensionless temperature profiles are obtained for the various values of the ratio of free stream velocity and stretching velocity, heat source parameter, Prandtl number, thermal radiation parameter, the suction and injection velocity parameter and magnetic parameter and dimensionality index in the series form with the help of homotopy analysis method (HAM). Convergence of the series is explicitly discussed. In addition, shear stress and heat flux at the surface are calculated.  相似文献   

11.
The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is investigated. The governing non-linear partial differential equations describing the problem are reduced to a system of non-linear ordinary differential equations using similarity transformations solved numerically using the Chebyshev spectral method. Numerical results for velocity, angular velocity and temperature profiles are shown graphically and discussed for different values of the inverse Darcy number, the heat generation/absorption parameter, and the melting parameter. The effects of the pertinent parameters on the local skin-friction coefficient, the wall couple stress, and the local Nusselt number are tabulated and discussed. The results show that the inverse Darcy number has the effect of enhancing both velocity and temperature and suppressing angular velocity. It is also found that the local skin-friction coefficient decreases, while the local Nusselt number increases as the melting parameter increases.  相似文献   

12.
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.  相似文献   

13.
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.  相似文献   

14.
A periodic transient test technique based on the axial dispersion model is proposed for the determination of both heat transfer coefficients and axial dispersion coefficients in heat exchangers. The model uses a parameter called the axial dispersive Peclet number to account for the deviation of the flow pattern from ideal plug flow. It takes both axial dispersion in the fluid and axial heat conduction in the wall into account and is solved analytically by means of a complex Fourier transform. Experiments conducted on dented copper tubes show that axial dispersion has a significant effect on the dynamic temperature response of a heat exchanger.  相似文献   

15.
A nonsimilar boundary layer analysis has been presented for the free convection along a vertical plate embedded in a fluid-saturated porous medium in the presence of surface mass transfer and internal heat generation. The transformed conservation laws are solved numerically for the cases of variable wall temperature and variable wall heat flux boundary conditions. Results are presented for the details of the velocity and temperature fields as well as Nusselt number. Received on 13 December 1996  相似文献   

16.
Heat transfer in the steady axisymetrical laminar source flow of an incompressible electrically conducting fluid between two parallel disks in the presence of a transverse applied magnetic field is analyzed. The energy equation is solved numerically for the temperature distribution, where both Joulean and viscous heating are included. Both local and average Nusselt numbers for the case of constant wall temperature are evaluated. For fluids of moderate and high Prandtl numbers, Nusselt number is seen to be a strong function of both Hartmann number and a heat generation parameter together with a modified Peclet number. However, for fluids of small Prandtl number, Joulean heating and viscous dissipation can be neglected without appreciable error.  相似文献   

17.
In this article nonsimilarity solution for mixed convection from a horizontal surface in a saturated porous medium was obtained for the case of variable surface heat flux. The entire mixed convection regime, ranging from pure forced convection to pure free convection, is considered by introducing a single nonsimilarity parameter. Heat transfer results are predicted by employing four different flow models, namely, Darcy's law, the Ergun model, and the Brinkman-Forchheimer-extended Darcy model with constant and variable porosity. The variable porosity effect is approximated by an exponential function. Effects of transverse thermal dispersion are taken into consideration in the energy equation, along with variable stagnant thermal conductivities. The formulation of the present problem shows that the flow and heat transfer characteristics depend on five parameters, that is, the power in the variation of surface heat flux, the nonsimilarity mixed-convection parameter, the inertia effect parameter, the boundary effect parameter, and the ratio of thermal conductivity of the fluid phase to that of the solid phase. Numerical results for the local Nusselt number variations, based on the various flow models, are presented for the entire mixed convection regime. The impacts␣of different governing parameters on the heat transfer results are thoroughly investigated. Received on 7 August 1997  相似文献   

18.
Whole field velocity and point temperature and surface heat flux measurements were performed to characterise the interaction of a single rising ellipsoidal air bubble with the free convection flow from a heated flat surface immersed in water at different angles of inclination. Two thermocouples and a hot film sensor were used to characterise heat transfer from the surface, while a time-resolved digital particle image velocimetry technique was used to map the bubble induced flow in a plane parallel to the surface. Heat flux fluctuations, preceding and following the bubble passage, were shown to correlate with the variation in both local flow velocities and fluid temperatures. The largest increases in heat transfer were recorded when both flow and temperature effects combined to enhance the convective cooling simultaneously. Such conditions were shown to be most likely met when the block was inclined at 45°, thus forcing the bubble to slide closer to the heated surface and hence to the thermal boundary layer.  相似文献   

19.
 In this paper we present a mathematical analysis of heat and mass transfer phenomena in a visco–elastic fluid flow over an accelerating stretching sheet in the presence of heat source/sink, viscous dissipation and suction/blowing. Similarity transformations are used to convert highly non-linear partial differential equations into ordinary differential equations. Several closed form analytical solutions for non-dimensional temperature, concentration, heat flux, mass flux profiles are obtained in the form of confluent hypergeometric (Kummer's) functions for two different cases of the boundary conditions, namely, (i) wall with prescribed second order power law temperature and second order power law concentration (PST), and (ii) wall with prescribed second order power law heat flux and second order power law mass flux (PHF). The effect of various physical parameters like visco–elasticity, Eckert number, Prandtl number, heat source/sink, Schmidt number and suction/blowing parameter on temperature and concentration profiles are analysed. The effects of all these parameters on wall temperature gradient and wall concentration gradient are also discussed. Received on 23 March 2000 / Published online: 29 November 2001  相似文献   

20.
A sophisticated theoretical and mathematical model is proposed. It is verified that this model can estimate and monitor the detailed behavior for the steady Carreau fluid flow past a nonlinear stretching surface and the predicted phenomena due to the presence of heat flux, thermal radiation, and viscous dissipation. Despite the fact that some properties of the fluid do not depend on the temperature, the fluid thermal conductivity is assumed to depend on the temperature. Based on accelerating the fluid elements, some of the kinetic energy for the fluid can be turned to the internal heating energy in the form of viscous dissipation phenomena. The contribution in this study is that a similar solution is obtained, in spite of the high nonlinearity of the Carreau model,especially, with the heat flux, variable conductivity, and viscous dissipation phenomena.Some of the major significant findings of this study can be observed from the reduction in the fluid velocity with enhancing the Weissenberg number. Likewise, the increase in the sheet temperature is noted with increasing the Eckert number while the reverse behavior is observed for increasing both the radiation parameter and the conductivity parameter.Finally, the accuracy and trust in the proposed numerical method are validated after benchmarking for our data onto the earlier results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号