首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This contribution describes a method to prepare high-capacity anion-exchange membranes for chromatographic bioseparations. Surface-initiated atom transfer radical polymerization was used to graft poly(2-dimethylaminoethyl methacrylate) (poly(DMAEMA)) nanolayers from the pore surfaces of commercially available regenerated cellulose membranes. Initial measurements were made to determine the thickness evolution of the poly(DMAEMA) nanolayers, using a model flat substrate designed to mimic the three-dimensional nature of initiator incorporation into the membrane. Thereafter, polymerization time was used as the independent variable to control the mass of polymer grafted from the membrane surfaces and, thus, the protein binding capacity. ATR-FTIR, AFM, and SEM were used to characterize changes in the chemical functionality, surface topography, and pore morphology of membranes as a result of modification. Bovine serum albumin was used to evaluate the static protein binding capacity of poly(DMAEMA)-modified membranes. Maximum static binding capacities increased with increasing polymerization time in a linear fashion for short polymerization times (<6 h). For longer polymerization times, capacity increased non-linearly, eventually reaching a plateau value of 66.3 mg/mL.  相似文献   

2.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

3.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

4.
A one-step procedure to hydrophilize monodisperse poly(chloromethyl-styrene-co-divinylbenzene) beads has been presented with 2-hydroxy-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propy1 2-methylacrylate(HTMA) as monomer by surface-initiated atom transfer radical polymerization(SI-ATRP).The length of the grafted poly(HTMA) chain was varied via controlling the ratio of HTMA to initiator on the surface of the beads.Using these grafted beads as the stationary phase in hydrophilic interaction chromatography,good separation was obtained for nucleosides in the mobile phase of acetonitrile-water.It was also found that the retention time and selectivity of solutes showed a positive relationship with the length of the grafted poly(HTMA) chain.  相似文献   

5.
This article reports on the synthesis of thermosensitive polymer brushes on silica nanoparticles by atom transfer radical polymerization (ATRP) and the study of thermo-induced phase transitions in water. Silica nanoparticles were prepared by the St?ber process and the surface was functionalized by an ATRP initiator. Surface-initiated ATRPs of methoxydi(ethylene glycol) methacrylate (DEGMMA) and methoxytri(ethylene glycol) methacrylate (TEGMMA) were carried out in THF at 40 degrees C in the presence of a free initiator, benzyl 2-bromoisobutyrate. The polymerizations were monitored by 1H NMR spectroscopy and gel permeation chromatography. The hairy hybrid nanoparticles were characterized by thermogravimetric analysis and scanning electron microscopy, and the thermoresponsive properties were investigated by variable temperature 1H NMR spectroscopy and dynamic light scattering. The cloud points of free poly(DEGMMA) and poly(TEGMMA) in water were around 25 and 48 degrees C, respectively. The thermo-induced phase transitions of polymer brushes on silica nanoparticles began at a lower temperature and continued over a broader range (4-10 degrees C) than those of free polymers in water (< 2 degrees C).  相似文献   

6.
The modification of silicon oxide with poly(ethylene glycol) to effectively eliminate protein adsorption has proven to be technically challenging. In this paper, we demonstrate that surface-initiated atom transfer radical polymerization (SI-ATRP) of oligo(ethylene glycol) methyl methacrylate (OEGMA) successfully produces polymer coatings on silicon oxide that have excellent protein resistance in a biological milieu. The level of serum adsorption on these coatings is below the detection limit of ellipsometry. We also demonstrate a new soft lithography method via which SI-ATRP is integrated with microcontact printing to create micropatterns of poly(OEGMA) on glass that can spatially direct the adsorption of proteins on the bare regions of the substrate. This ensemble of methods will be useful in screening biological interactions where nonspecific binding must be suppressed to discern low probability binding events from a complex mixture and to pattern anchorage-dependent cells on glass and silicon oxide.  相似文献   

7.
A detailed investigation of the polymerization of allyl methacrylate, a typical unsymmetrical divinyl compound containing two types of vinyl groups, methacryloyl and allyl, with quite different reactivities, was performed with atom transfer radical polymerization (ATRP). Homopolymerizations were carried out in bulk, with ethyl‐2‐bromoisobutyrate as the initiator and with copper halide (CuX, where X is Cl or Br) with N,N,N,N,N″‐pentamethyldiethylenetriamine as the catalyst system. Kinetic studies demonstrated that during the early stages of the polymerization, the ATRP process proceeded in a living manner with a low and constant radical concentration. However, as the reaction continued, the increased diffusion resistance restricted the mobility of the catalyst system and interrupted the equilibrium between the growing radicals and dormant species. The obtained poly(allyl methacrylate)s (PAMAs) were characterized with Fourier transform infrared, 1H NMR, and size exclusion chromatography techniques. The dependence of both the gel point conversion and molecular characteristics of the PAMA prepolymers on different experimental parameters, such as the initiator concentration, polymerization temperature, and type of halide used as the catalyst, was analyzed. These real gel points were compared with the ones calculated according to Gordon's equation under the tentative assumption of equal reactivity for the two types of vinyl groups. Moreover, the microstructure of the prepolymers was the same as that exhibited by those homopolymers prepared by conventional free‐radical polymerization; the fraction of syndiotactic arrangements increased as the reaction temperature was lowered. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2395–2406, 2005  相似文献   

8.
Sun X  Liu J  Lee ML 《Electrophoresis》2008,29(13):2760-2767
In-channel atom transfer radical polymerization (ATRP) was used to graft a PEG layer on the surface of microchannels formed in poly(glycidyl methacrylate)-co-(methyl methacrylate) (PGMAMMA) microfluidic devices. The patterned and cover plates were first anchored with ATRP initiator and then thermally bonded together, followed by pumping a solution containing monomer, catalyst, and ligand into the channel to perform ATRP. A PEG-functionalized layer was grafted on the microchannel wall, which resists protein adsorption. X-ray photoelectron spectroscopy (XPS) was used to investigate the initiator-bound surface, and EOF was measured to evaluate the PEG-grafted PGMAMMA microchannel. Fast, efficient, and reproducible separations of amino acids, peptides, and proteins were obtained using the resultant microdevices. Separation efficiencies were higher than 1.0x10(4) plates for a 3.5 cm separation microchannel. Compared with microdevices modified using a previously reported ATRP technique, these in-channel modified microdevices demonstrated better long-term stability.  相似文献   

9.
Surface-initiated reverse atom transfer radical polymerization (reverse ATRP) technique was used to synthesize well-controlled nanostructure of polymer brushes from silicon wafer. Kinetic studies revealed a linear increase in polymer film thickness with reaction time, indicating that chain growth from surface was a controlled process with a “living” characteristic. This technique provides a simple and efficient approach to create various nanostructures of polymer brushes potentially used for designing nanodevices. Analysis of the polymer brush layers was conducted using ellipsometry, XPS, AFM and contact angle measurements, respectively.  相似文献   

10.
A one-step procedure based on surface-initiated atom transfer radical polymerization (SI-ATRP) to hydrophilize monodisperse poly(chloromethylstyrene-co-divinylbenzene) beads has been presented in this work, using 2-hydroxyl-3-[4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl]propyl 2-methylacrylate (HTMA) as a monomer. The chain length of the grafted poly(HTMA) was controlled via varying the ratio of HTMA to initiator on the surface of the beads. When using the grafted beads as a stationary phase in hydrophilic interaction chromatography (HILIC), good resolution for nucleobases/nucleosides was obtained with acetonitrile aqueous solution as an eluent; while for phenolic acids and glycosides, they could be eluted and separated in the presence of TFA. The retention time of the solutes increased with the amount of the grafted HTMA. The retention mechanisms of solutes were investigated by the effects of mobile phase composition and buffer pH on the retention of solutes. The results illustrated that the retention behaviors of the tested solutes were dominated by hydrogen bonding interaction and electrostatic interaction. From the chemical structure of the ligands, the modified beads could not only be used as a stationary phase in HILIC, but also act as a useful building block to develop new stationary phases for other chromatographic modes such as affinity media.  相似文献   

11.
12.
Poly(dimethyl siloxane) (PDMS) has been focused on recently due to its variety of applications specifically in microsystems technology. Many companies market two-component PDMS, which is comprised of a base component and a curing agent. Widely known and used for microsystems applications is Sylgard 184 from Dow Corning. Present work deals with two-component Room Temperature Vulcanized (RTV) PDMS from three different companies. They are Sylgard 184 from Dow Corning, RTV 615 from GE Silicones and RTV 141 from Rhodia Chemicals. Temporary increase in wettability of these three different types of PDMS by oxygen plasma by varying the plasma power and exposure time has been studied and compared with results available in literature. The hydrophobic recovery of the modified surfaces was monitored as a function of time and quantified. The surfaces were characterized using contact angle measurements and ATR-FTIR and XPS spectroscopy, their behavior analyzed in term of free surface energy and work of adhesion.  相似文献   

13.
A new N-heterocyclic initiator N-[2-(8-heptadecenyl)-4,5-dihydro-1H-imidazole-1-ethyl]-2-bromoisobutyramide was synthesized and immobilized on the surface of iron. Methyl methacrylate was grafted from iron substrates via surface-initiated atom transfer radical polymerization (ATRP). The first-order kinetics of poly(methyl methacrylate) (PMMA) grafting from iron revealed the control of ATRP throughout the reaction, and the polymerization reached a high conversion producing polymers with good control of molecular weights (M n?=?68,800) and low polydispersity indexes (M w/M n?<?1.32). The thickness of the polymer brush films was greater than 47 nm after 7 h of reaction time. The grafting density was estimated to be 0.48 chains?nm?2. The iron surfaces at various stages of modification were characterized by scanning electron microscopy and energy dispersive spectrometer. The analytical results were consistent with a thin compact polymer coating on the surface of iron. Iron surface with grafted PMMA coating showed significant corrosion resistance. This work demonstrated that the surface-initiated ATRP is a versatile means of the surface modification of active metals with well-defined and functionalized polymer brushes.  相似文献   

14.
The self-initiated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in cyclohexanone (CHO) in the presence of CuCl2/N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA) is reported. The linear semilogarithmic plot of ln([M]0/[M]) vs time, the linear increase of number-average molecular weight (Mn) with conversion, and rather narrow molecular weight distributions (MWDs) have been observed, which are in agreement of the characteristics of living/controlled polymerization. The NMR spectrum revealed the existence of terminal chlorine. The chain extension further proved the living characteristic. The polymerization can only be successful using CHO as the solvent, and is well controlled at the temperature as low as 50 °C. The effects of ligand, solvent, temperature and monomer to catalyst ratio are all discussed.  相似文献   

15.
16.
For development of surface‐functionalized gold nanoparticles (GNPs) as cellular probes, we report herein the synthesis of glycoconjugates of GNPs with cyclic sugar methacrylate, 2‐lactobionamidoethyl methacrylate (LAMA). The strategy involves the attachment of an initiator on the nanoparticle surface followed by surface initiated‐atom transfer radical polymerization (SI‐ATRP) of LAMA. SI‐ATRP of LAMA was achieved by reacting a mixture of copper (I) bromide (CuBr), 2,2′‐bipyridine (bpy) and initiator‐bound GNPs in methanol at 20 °C for 12 h. The resultant GNP glycoconjugates were characterized using Fourier‐transform infrared (FT‐IR) spectroscopy, X‐ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The FT‐IR spectra of GNP glycoconjugates show IR peaks characteristic of LAMA demonstrating the formation of a LAMA layer on the GNPs' surface. The XPS spectrum of glycoconjugates shows signals due to the presence of carbon (C1s, 288 eV) and oxygen (O1s, 536 eV) along with gold (Au 4f, 100 eV; Au 4p, 743 eV). The increase in diameter of GNPs from 13 to 25 nm measured by SEM further confirms the presence of a LAMA layer on the surface of the GNPs. Considering the biological importance of glycoconjugates, such as cell recognition, cell adhesion and cell growth regulation, the method described herein would be beneficial in many areas such as pathogen detection and biosensors. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Acrylic polymers, including poly(methyl methacrylate), poly(2,2,2-trifluoroethyl methacrylate), poly( N,N'-dimethyaminoethyl methacrylate), and poly(2-hydroxyethyl methacrylate) were grafted from flat nickel and copper surfaces through surface-initiated atom transfer radical polymerization (ATRP). For the nickel system, there was a linear relationship between polymer layer thickness and monomer conversion or molecular weight of "free" polymers. The thickness of the polymer brush films was greater than 80 nm after 6 h of reaction time. The grafting density was estimated to be 0.40 chains/nm2. The "living" chain ends of grafted polymers were still active and initiated the growth of a second block of polymer. Block copolymer brushes with different block sequences were successfully prepared. The experimental surface chemical compositions as measured by X-ray photoelectron spectroscopy agreed very well with their theoretical values. Water contact angle measurements further confirmed the successful grafting of polymers from nickel and copper surfaces. The surface morphologies of all samples were studied by atomic force microscopy. This study provided a novel approach to prepare stable functional polymer coatings on reactive metal surfaces.  相似文献   

18.
The synthesis of 4-arm methyl methacrylate star polymer had been achieved successfully by atom transfer radical polymerization using CuCl as catalyst, 2, 2′-bipyridyl as ligand and pentaerythritol tetrakis (2-bromoisobutyrate) as the initiator. The star polymer was characterized by 1H-NMR and GPC, by which the precise 4-arm structure of the PMMA was confirmed. __________ Translated from Journal of Shaanxi Normal University (Natural Science Edition), 2008, 36(2) (in Chinese)  相似文献   

19.
The controlled radical polymerization of allyl methacrylate by atom transfer radical polymerization was carried out in solution at 70 °C, with ethyl 2‐bromoisobutyrate as the initiator and copper halide (CuX, where X is Cl or Br) with N,N,N,N,N″‐pentamethyldiethylenetriamine as the catalyst system. Kinetic analyses demonstrated that all the homopolymerization reactions showed a general behavior characterized by two clearly differentiated stages. Thus, in the early stage, the conversion increased continually with the time, independently of the solvent employed. In the second stage, a deceleration process took place, and a limit conversion was achieved, depending on the polarity and amount of the solvent used. The dependence of both the gel formation and limit conversion, as well as the molecular characteristics of poly(allyl methacrylate)s formed with different experimental parameters, such as the initial monomer concentration, the solvent employed, and the type of halide used as a catalyst, was also examined. The prepared polymers were characterized by size exclusion chromatography, Fourier transform infrared, and one‐ and two‐dimensional nuclear magnetic resonance spectroscopy. Moreover, chain‐growth experiments with butyl acrylate as the comonomer proved the living character of the poly(allyl methacrylate)s obtained, with these used as macroinitiators. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6247–6261, 2005  相似文献   

20.
We report the synthesis of ternary polymer particle material systems composed of (a) a spherical colloidal particle core, coated with (b) a polyelectrolyte intermediate shell, and followed by (c) a grafted polymer brush prepared by surface-initiated polymerization as the outer shell. The layer-by-layer (LbL) deposition process was utilized to create a functional intermediate shell of poly(diallyl-dimethylammonium chloride)/poly(acrylic acid) multilayers on the colloid template with the final layer containing an atom transfer radical polymerization (ATRP) macroinitiator polyelectrolyte. The intermediate core-shell architecture was analyzed with FT-IR, electrophoretic mobililty (zeta-potential) measurements, atomic force microscopy, and transmission electron microscopy (TEM) techniques. The particles were then utilized as macroinitiators for the surface-initiated ATRP grafting process for poly(methyl methacrylate) polymer brush. The polymer grafting was confirmed with thermo gravimetric analysis, FT-IR, and TEM. The polymer brush formed the outermost shell for a ternary colloidal particle system. By combining the LbL and surface-initiated ATRP methods to produce controllable multidomain core-shell architectures, interesting functional properties should be obtainable based on independent polyelectrolyte and polymer brush behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号