首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 442 毫秒
1.
The stability analysis of the n=1 resistive wall mode is carried out for a simplified model of collisionless tokamak plasma. It is found that the trapped particle compressibility and the resonance between the mode and the precession drift frequency lead to a significant improvement of the beta stability limits. It is shown that, within the frame of the simplified model, the resistive wall mode can be fully suppressed and the plasma can be stable up to the wall beta limits for a slow plasma rotation.  相似文献   

2.
The energetic-particle-induced geodesic acoustic mode(EGAM) is studied using gyrokinetic particle simulations in tokamak plasmas.In our simulations,exponentially growing EGAMs are excited by energetic particles with a slowing-down distribution.The frequencies of EGAMs are always below the frequencies of GAMs,which is due to the non-perturbative contribution of energetic particles(EPs).The mode structures of EGAMs are similar to the corresponding mode structures of GAMs.Our gyrokinetic simulations show that a high EP density can enhance the EGAM growth rate,due to high EP free energy,and that EPs' temperature and the pitch angle of the distribution modify the EGAM frequency/growth rate by means of the resonance condition.Kinetic effects of the thermal electrons barely change the EGAM frequency,and have a weak damping effect on the EGAM.Benchmarks between the gyrokinetic particle simulations and a local EGAM dispersion relation exhibit good agreement in terms of EGAM frequency and growth rate.  相似文献   

3.
The effect of plasma with toroidal rotation on the resistive wall modes in tokamaks is studied numerically. An eigenvalue method is adopted to calculate the growth rate of the modes for changing plasma resistivity and plasma density distribution, as well as the diffusion time of magnetic field through the resistive wall. It is found that the resistive wall mode can be suppressed by the toroidal rotation of the plasma. Also, the growth rate of the resistive wall mode decreases when the edge plasma density is the same as the core plasma density, but it only changes slightly with the plasma resistivity.  相似文献   

4.
陈龙溪  雷文庆  吴斌 《计算物理》2013,30(6):902-908
数值研究平衡电流位形对电阻壁模式稳定性的影响.研究发现,对于不同的电流位形,当等离子体边缘处安全因子一定时,最不稳定的电阻壁模的环向模数和极向模数相同.在同一壁位置下,非均匀电流位形驱动的电阻壁模的线性增长率比均匀电流位驱动的电阻壁模的线性增长率大.等离子体速度流在不同的初始电流位形下对电阻壁模稳定性的影响不同.由于磁力线在壁上的挤压,经过线性演化后,电阻壁模进入非线性演化并达到饱和状态,非均匀电流位形下的扰动磁能比均匀电流位形下的扰动磁能饱和度低.  相似文献   

5.
数值研究了平衡磁场位形对电阻壁模稳定性的影响。研究发现,磁场剪切对电阻壁模有解稳作用,对于不同的剪切磁场位形,最不稳定的电阻壁模的环向模数和极向模数不同。等离子流对电阻壁模的增长有抑制作用,稳定住电阻壁模的临界流速度随着磁场剪切率的增大而增大。电阻壁模经线性增长后,进入非线性演化阶段,最后达到饱和状态,剪切磁场位形下的扰动磁能比均匀磁场位形下的扰动磁能饱和度高。  相似文献   

6.
研究了模与模之间的相互作用对电阻壁模(RWM)稳定性的影响.当存在多个模的相互作用时,最不稳定的(3,1)模的线性增长率有所下降.经过线性演化后,因磁力线在壁上的挤压,电阻壁模进入非线性饱和状态.与单个模的演化相比,多个模存在时,(3,1)模的饱和度会下降,(5,2)模的磁能会有相应的增长,而(2,1)模磁能饱和度变化不大.  相似文献   

7.
曹琦琦  刘悦  王硕 《物理学报》2021,(4):270-277
在托卡马克等离子体中,电阻壁模是非常重要的磁流体不稳定性,特征时间在毫秒量级.对长时间稳态运行下的先进托卡马克,电阻壁模限制着聚变装置的运行参数空间(放电时间和比压),影响经济效益,所以研究电阻壁模稳定性至关重要.本文使用MARS程序,针对ITER装置上9 MA先进运行平衡位形,研究了等离子体旋转和反馈控制对电阻壁模的...  相似文献   

8.
Active measurements of the plasma stability in tokamak plasmas reveal the importance of kinetic resonances for resistive wall mode stability. The rotation dependence of the magnetic plasma response to externally applied quasistatic n=1 magnetic fields clearly shows the signatures of an interaction between the resistive wall mode and the precession and bounce motions of trapped thermal ions, as predicted by a perturbative model of plasma stability including kinetic effects. The identification of the stabilization mechanism is an essential step towards quantitative predictions for the prospects of "passive" resistive wall mode stabilization, i.e., without the use of an "active" feedback system, in fusion-alpha heated plasmas.  相似文献   

9.
Stabilization of the resistive wall mode (RWM) by high-speed differentially rotating conducting walls is demonstrated in the laboratory. To observe stabilization intrinsic azimuthal plasma rotation must be braked with error fields. Above a critical error field the RWM frequency discontinuously slows (locks) and fast growth subsequently occurs. Wall rotation is found to reduce the locked RWM saturated amplitude and growth rate, with both static (vacuum vessel) wall locked and slowly rotating RWMs observed depending on the alignment of wall to plasma rotation. At high wall rotation RWM onset is found to occur at larger plasma currents, thus increasing the RWM-stable operation window.  相似文献   

10.
The finite layer method (FLM) is presented as a discretisation technique for the computation of noise transmission through double walls. It combines a finite element method (FEM) discretisation in the direction perpendicular to the wall with trigonometric functions in the two in-plane directions. It is used for solving the Helmholtz equation at the cavity inside the double wall, while the wall leaves are modelled with the thin plate equation and solved with modal analysis. Other approaches to this problem are described here (and adapted where needed) in order to compare them with the FLM. They range from impedance models of the double wall behaviour to different numerical methods for solving the Helmholtz equation in the cavity. For the examples simulated in this work (impact noise and airborne sound transmission), the former are less accurate than the latter at low frequencies. The main advantage of FLM over the other discretisation techniques is the possibility of extending it to multilayered structures without changing the interpolation functions and with an affordable computational cost. This potential is illustrated with a calculation of the noise transmission through a multilayered structure: a double wall partially filled with absorbing material.  相似文献   

11.
We demonstrate a 2080 nm long-wavelength mode-locked thulium(Tm)-doped fiber laser operating in the dissipative soliton resonance(DSR) regime. The compact all-fiber dumbbell-shaped laser is simply constructed by a 50/50 fiber loop mirror(FLM), a 10/90 FLM, and a piece of large-gain Tm-doped double-clad fiber pumped by a 793 nm laser diode. The 10/90 FLM is not only used as an output mirror, but also acts as a periodical saturable absorber for initiating DSR mode locking. The stable DSR pulses are generated at the center wavelength as long as 2080.4 nm, and the pulse duration can be tunable from 780 to 3240 ps as the pump power is increased. The maximum average output power is 1.27 W, corresponding to a pulse energy of 290 nJ and a nearly constant peak power of 93 W. This is, to the best of our knowledge, the longest wavelength for DSR operation in a mode-locked fiber laser.  相似文献   

12.
通过耦合三维微波腔中光子和腔内钇铁石榴石单晶小球中的自旋波量子形成腔-自旋波量子的耦合系统,并通过精确调节系统参数在该实验系统中观测到各向异性奇异点.奇异点对应于非厄米系统中一种特殊状态,在奇异点处,耦合系统的本征值和本征矢均简并,并且往往伴随着非平庸的物理性质.以往大量研究主要集中在各向同性奇异点的范畴,它的特征是在系统参数空间中沿着不同参数坐标趋近该奇异点时具有相同的函数关系.在这篇文章中,主要介绍实验上在腔光子-自旋波量子耦合系统中通过调节系统的耦合强度和腔的耗散衰减系数两条趋近奇异点的路径而实现了各向异性奇异点,具体分别对应于在趋近奇异点时,本征值的虚部的变化与耦合强度和腔的衰减系数的变化会有线性和平方根不同的行为.各向异性奇异点的实现有助于基于腔光子-自旋波量子耦合系统的量子信息处理和精密探测器件的进一步研究.  相似文献   

13.
High beta poloidal tokamaks can confine plasma pressures an order of magnitude higher than their low beta poloidal counterparts. The theoretical stability of these high beta poloidal magnetohydrodynamics equilibria was left unresolved for many years. Using modern computational tools, such configurations are now found stable to Mercier, resistive and high-n (ideal and resistive) ballooning criteria as well as fixed and free-boundary modes for a wide range of current density profiles in the framework of a low field large-aspect-ratio machine.  相似文献   

14.
We proposed and demonstrated that PT symmetric metamaterials could be used to achieve enhanced spin Hall effect (SHE) of light. We find that when laser mode is excited in PT symmetric system, the enhanced SHE could be obtained in both transmitted and reflected beams. In addition, as exceptional points (EPs) of PT symmetric system can happen for both p- and s-polarizations, the enhanced SHE of reflected light can function for both horizontally and vertically polarized incident beams. Particularly, these EPs can lead to unidirectional reflectionlessness, asymmetric SHE with maximum contrast ratio of 48 is obtained by launching light beams near EPs. Our work opens up a new path to obtain enhanced transverse displacement for both reflected and transmitted light and enables more opportunities in manipulating photonic SHE.  相似文献   

15.
结合HL-1装置的条件,采用撕裂模的准线性理论,研究了托克马克中导体壁对m=2/n=1扰动模的稳定作用。着重研究了导体壁位置,等离子体电流分布,等离子体位形对这种稳定效应的影响。结果表明,共振面的位置与壁的稳定作用有密切关系,存q_a接近于2的位形中,m=2的撕裂模扰动可以被靠近等离子体的导体壁完全抑制。导体壁的稳定效应与等离子体电流分布相联系,在一些现实的电流分布中,只要适当地压低等离子体边界区的电流密度,壁的稳定效应会更加显现出来。  相似文献   

16.
If βN exceeds no-wallβN, the plasma will be unstable because of external kink and resistive wall mode(RWM). In this article, the effect of the passive structure and the toroidal rotation on the RWM stability in the experimental advanced superconducting tokamak(EAST) are simulated with CHEASE and MARS codes. A model using a one-dimensional(1D)surface to present the effect of the passive plate is proved to be credible. The no wall βN limit is about 3li, and the ideal wall βN limit is about 4.5li on EAST. It is found that the rotation near the q = 2 surface and the plasma edge affects the RWM more.  相似文献   

17.
Exceptional points (EPs) are non-Hermitian degeneracies or branch points where eigenvalues and their corresponding eigenvectors coalesce. Due to the complex non-trivial topology of Riemann surfaces associated with non-Hermitian Hamiltonians, the dynamical encirclement or proximity of EPs in parameter space has been shown to lead to topological mode conversions and some novel physical phenomena. In fact, degeneracies can also form continuous line geometries, which are called exceptional lines (ELs). The problem is whether the state transfer around the ELs can show different characteristics from the EPs, which is less explored. Here, novel properties of quantum state transfer around the ELs based on a quantum walk platform are explored. It is found that the evolutionary state around the ELs is independent of the initial state and evolution direction, and the transfer of quantum state is more efficient than the case around the EPs. Furthermore, based on such a property, an entangled state generation insensitive to the incident state is realized experimentally. The work opens up a new way for the application of non-Hermitian physics in the field of quantum information.  相似文献   

18.
Active feedback stabilization of pressure-driven modes in tokamaks is investigated by toroidal computations. Typically, the feedback does not strongly modify the plasma-generated magnetic field perturbation. Feedback with modest gain and a single coil array poloidally stabilizes substantially for a range of coil shapes. Optimum design uses narrow sensor coils not too far from the plasma and rather wide feedback coils, which may be outside the resistive wall. Complex gain, which makes the mode rotate, can decrease the gain required for stabilization, but real gain is more robust.  相似文献   

19.
In this paper, reflectivity characteristics of a fiber loop mirror (FLM), which is formed by inserting a fiber polarization controller (PC) into the fiber loop of an ordinary FLM, are investigated in detail. A theoretical model for determining the reflectivity characteristics of the FLM is present by using the equivalent optical path technique, and the reflectivity characteristics of the FLM are then simulated with the model. The simulation results show that, when the FLM is based on a 3 dB optical coupler (OC), the reflectivity of the FLM may be continuously adjusted to any value between 1 and 0 by changing the PC state, i.e. by either changing the fast axis orientation or the birefringence intensity of the PC alone, as well as both of them; the reflectivity spectra of the FLM are wide and flattened for any PC state, mainly limited by the operating bandwidth of the OC used. The reflectivity characteristics of the FLM are further tested experimentally. The results verify that the reflectivity of the FLM may truly be continuously adjusted between its maximum and minimum values by changing the PC state. The obtainable maximum and minimum reflectivities of the FLM are measured to be 93% and 2%, respectively. Moreover, the experimental results are in agreement with those of the simulations.  相似文献   

20.
B. Sardari  R. Asadi  K. Abbasian  A. Rostami 《Optik》2012,123(4):286-290
High-birefringence fiber loop mirrors (Hi-Bi FLM) are interested in a variety of applications such as temperature and strain sensors, but their serious limitation is their structure length, in the order of several meters, for application in optical integrated devices. In this paper, we have used electromagnetically induced transparency (EIT) phenomena to reduce the length of Hi-Bi FLM to below 50 μm, where 3-level nanocrystals (QDs) are doped in Hi-Bi FLM to realize EIT conditions. EIT phenomenon amplifies refractive index differences of slow and fast axes of Hi-Bi FLM, so that the length of FLM to obtain required phase difference is reduced. This proposed sensor can measure temperature and strain simultaneously with 62.5 pm/°C and 0.3 μm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号