首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid multiple toxin method based on liquid chromatography with mass spectrometry (LC/MS) was developed for the detection of okadaic acid (OA), dinophysistoxin-1 (DTX-1), DTX-2, yessotoxin (YTX), homoYTX, 45-hydroxy-YTX, 45-hydroxyhomo-YTX, pectenotoxin-1 (PTX-1), PTX-2, azaspiracid-1 (AZA-1), AZA-2, and AZA-3. Toxins were extracted from shellfish using methanol-water (80%, v/v) and were analyzed using a C8 reversed-phase column with a 5 mM ammonium acetate-acetonitrile mobile phase under gradient conditions. The method was validated for the quantitative detection of OA, YTX, PTX-2, and AZA-1 in 4 species (mussels, Mytilus edulis; cockles, Cerastoderma edule; oysters, Crassostrea gigas; king scallop, Pecten maximus) of shellfish obtained from United Kingdom (UK) waters. Matrix interferences in the determination of the toxins in these species were investigated. The validated linear range of the method was 13-250 microg/kg for OA, PTX-2, and AZA-1 and 100-400 microg/kg for YTX. Recovery and precision ranged between 72-120 and 1-22%, respectively, over a fortification range of 40-160 microg/kg for OA, PTX-2, and AZA-1 and 100-400 microg/kg for YTX. The limit of detection, reproducibility, and repeatability of analysis showed acceptable performance characteristics. A further LC/MS method using an alkaline hydrolysis step was assessed for the detection of OA, DTX-1, and DTX-2 in their esterified forms. In combination with the LC/MS multiple toxin method, this allows detection of all toxin groups described in Commission Decision 2002/225/EC.  相似文献   

2.
Guo M  Tan Z  Wu H  Li Z  Zhai Y 《色谱》2012,30(3):256-261
建立了同时测定贝类中大田软海绵酸(okadaic acid, OA)及其衍生物鳍藻毒素(dinophysistoxin-1, DTX-1)、蛤毒素(pectenotoxin-2, PTX-2)和虾夷扇贝毒素(yessotoxin, YTX)的液相色谱-串联质谱分析方法。样品经甲醇提取,固相萃取柱净化,C18色谱柱分离,经含甲酸和甲酸铵的乙腈-水溶液为流动相梯度洗脱,选择反应监测(SRM)模式检测,正、负离子切换扫描,基质标准校正,外标法定量。结果表明,OA、DTX-1和YTX的线性范围为2.0~200.0 μg/L,定量限(以信噪比(S/N)≥10计)为1.0 μg/kg; PTX-2的线性范围为1.0~100.0 μg/L,定量限为0.5 μg/kg;几种化合物的添加平均回收率为83.1%~105.7%,相对标准偏差(RSD)为3.16%~9.29%。成功应用本法对黄海灵山湾海域采集的贝类样品进行了分析,发现部分样品中含有大田软海绵酸、鳍藻毒素、蛤毒素和虾夷扇贝毒素。  相似文献   

3.
A liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the quantitative analysis of lipophilic marine toxins in shellfish extracts (mussel, oyster, cockle and clam) was validated in-house using European Union (EU) Commission Decision 2002/657/EC as a guideline. The validation included the toxins okadaic acid (OA), yessotoxin (YTX), azaspiracid-1 (AZA1), pectenotoxin-2 (PTX2) and 13-desmethyl spirolide-C (SPX1). Validation was performed at 0.5, 1 and 1.5 times the current EU permitted levels, which are 160 μg kg-1 for OA, AZA1 and PTX2 and 1,000 μg kg-1 for YTX. For SPX1, 400 μg kg-1 was chosen as the target level as no legislation has been established yet for this compound. The method was validated for determination in crude methanolic shellfish extracts and for extracts purified by solid-phase extraction (SPE). Extracts were also subjected to hydrolysis conditions to determine the performance of the method for OA and dinophysistoxin esters. The toxins were quantified against a set of matrix-matched standards instead of standard solutions in methanol. To save valuable standard, methanolic extract instead of the homogenate was spiked with the toxin standard. This was justified by the fact that the extraction efficiency is high for all relevant toxins (above 90%). The method performed very well with respect to accuracy, intraday precision (repeatability), interday precision (within-laboratory reproducibility), linearity, decision limit, specificity and ruggedness. At the permitted level the accuracy ranged from 102 to 111%, the repeatability from 2.6 to 6.7% and the reproducibility from 4.7 to 14.2% in crude methanolic extracts. The crude extracts performed less satisfactorily with respect to the linearity (less than 0.990) and the change in LC-MS/MS sensitivity during the series (more than 25%). SPE purification resulted in greatly improved linearity and signal stability during the series. Recently the European Food Safety Authority (EFSA) has suggested that to not exceed the acute reference dose the levels should be below 45 μg kg-1 OA equivalents and 30 μg kg-1 AZA1 equivalents. A single-day validation was successfully conducted at these levels. If the regulatory levels are lowered towards the EFSA suggested values, the official methods prescribed in legislation (mouse and rat bioassay) will no longer be sensitive enough. The validated LC-MS/MS method presented has the potential to replace these animal tests.  相似文献   

4.
A method that uses liquid chromatography with tandem mass spectrometry (LC/MS/MS) has been developed for the highly sensitive and specific determination of amnesic shellfish poisoning toxins, diarrhetic shellfish poisoning toxins, and other lipophilic algal toxins and metabolites in shellfish. The method was subjected to a full single-laboratory validation and a limited interlaboratory study. Tissue homogenates are blended with methanol-water (9 + 1), and the centrifuged extract is cleaned up with a hexane wash. LC/MS/MS (triple quadrupole) is used for quantitative analysis with reversed-phase gradient elution (acidic buffer), electrospray ionization (positive and negative ion switching), and multiple-reaction monitoring. Ester forms of dinophysis toxins are detected as the parent toxins after hydrolysis of the methanolic extract. The method is quantitative for 6 key toxins when reference standards are available: azaspiracid-1 (AZA1), domoic acid (DA), gymnodimine (GYM), okadaic acid (OA), pectenotoxin-2 (PTX2), and yessotoxin (YTX). Relative response factors are used to estimate the concentrations of other toxins: azaspiracid-2 and -3 (AZA2 and AZA3), dinophysis toxin-1 and -2 (DTX1 and DTX2), other pectenotoxins (PTX1, PTX6, and PTX11), pectenotoxin secoacid metabolites (PTX2-SA and PTX11-SA) and their 7-epimers, spirolides, and homoYTX and YTX metabolites (45-OHYTX and carboxyYTX). Validation data have been gathered for Greenshell mussel, Pacific oyster, cockle, and scallop roe via fortification and natural contamination. For the 6 key toxins at fortification levels of 0.05-0.20 mg/kg, recoveries were 71-99% and single laboratory reproducibilities, relative standard deviations (RSDs), were 10-24%. Limits of detection were <0.02 mg/kg. Extractability data were also obtained for several toxins by using successive extractions of naturally contaminated mussel samples. A preliminary interlaboratory study was conducted with a set of toxin standards and 4 mussel extracts. The data sets from 8 laboratories for the 6 key toxins plus DTX1 and DTX2 gave within-laboratories repeatability (RSD(R)) of 8-12%, except for PTX-2. Between-laboratories reproducibility (RSDR) values were compared with the Horwitz criterion and ranged from good to adequate for 7 key toxins (HorRat values of 0.8-2.0).  相似文献   

5.
Most liquid chromatography (LC) mass spectrometric (MS) methods used for routine monitoring of lipophilic marine toxins focus on the analysis of the 13 toxins that are stated in European Union legislation. However, to date over 200 lipophilic marine toxins have been described in the literature. To fill this gap, a screening method using LC coupled to high resolution (HR) orbitrap MS (resolution 100 000) for marine lipophilic toxins has been developed. The method can detect a wide variety of okadaic acid (OA), yessotoxin (YTX), azaspiracid (AZA) and pectenotoxin (PTX) group toxins. To build a library of toxins, shellfish and algae samples with various toxin profiles were obtained from Norway, Ireland, United Kingdom, Portugal and Italy. Each sample extract was analyzed with and without collision induced dissociation fragmentation. Based on their mass and specific fragmentation pattern, 85 different toxins were identified comprising 33 OA, 26 YTX, 18 AZA and 8 PTX group toxins. A major complication of full scan HRMS is the huge amount of data generated (file size), which restricts the possibility of a fast search. A software program called metAlign was used to reduce the orbitrap MS data files. The 200-fold reduced data files were screened using an additional software tool for metAlign: ‘Search_LCMS’. A search library was constructed for the 85 identified toxins. The library contains information about compound name, accurate mass, mass deviation (<5 ppm), retention time (min) and retention time deviation (<0.2 min). An important feature is that the library can easily be exchanged with other instruments as the generated metAlign files are not brand-specific. The developed screening procedure was tested by analyzing a set of known positive and blank samples, processing them with metAlign and searching with Search_LCMS. A toxin profile was determined for each of the contaminated samples. No toxins were found in the blank sample, which is in line with the results obtained for this sample in the routine monitoring program (rat bioassay and tandem LC–MS).  相似文献   

6.
A sensitive and selective liquid chromatography–tandem mass spectrometry method for the determination of pethidine in human plasma was developed and validated over the concentration range of 4–2000 ng/mL. After addition of ketamine as internal standard, liquid–liquid extraction was used to produce a protein‐free extract. Chromatographic separation was achieved on a 100 × 2.1 mm, 5 µm particle, AllureTM PFP propyl column, with 45:40:15 (v/v/v) acetonitrile–methanol–water containing 0.2% formic acid as mobile phase. The MS data acquisition was accomplished by multiple reactions monitoring mode with positive electrospray ionization interface. The lower limit of quantification was 4 ng/mL; for inter‐day and intra‐day tests, the precision (RSD) for the entire validation was less than 7%, and the accuracy was within 95.9–106.5%. The method is sensitive and simple, and was successfully applied to analysis of samples of clinical intoxication. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The aim of this work is to establish a method for the simultaneous determination of eight penicillins in milk samples by LC‐UV, LC‐MS and LC‐MS/MS. The procedure involves a step for clean‐up and to preconcentrate the analytes by SPE and a subsequent chromatographic analysis. LC‐UV, LC‐MS and LC‐MS/MS have been used for the simultaneous quantification of penicillins in milk. The proposed methods have been validated according to the EU guideline and present LOQ below the maximum limits of residues (MRLs) established by the European Union for penicillins in milk. The developed methods were applied to different milk samples obtained from cows medicated with penicillins.  相似文献   

8.
Yessotoxins are a group of large polyether toxins, produced by marine dinoflagellates, which cause widespread contamination of filter-feeding shellfish. A new, sensitive liquid chromatography-mass spectrometry (LC-MS) method has been developed for the determination of yessotoxin (YTX) and 45-hydroxy-yessotoxin (45-OHYTX), a major metabolite in shellfish. The LC system was coupled, via an electrospray ionisation (ESI) source, to an ion-trap MS in negative mode. The molecular related ion species at m/z 1141 [M-2Na+H]- was used as the parent ion for multiple MS experiments. MS-MS and MS3 gave major fragment ions at m/z 1061 [1141-SO3H]- and m/z 945 [1061-C9H12O]-. Predominant ions, that are due to the fragmentation of the backbone structure of YTXs, were observed at the MS4 stage. Reversed-phase LC using a C16 amide column was preferable to C18 phases for the separation of YTX and 45-OHYTX. Optimum calibration and reproducibility data were obtained for YTX using LC-MS-MS; r 2=0.9960, RSD < or = 6.3% at 0.25 microg YTX/g (n=5). The detection limit (S/N=3) was 30 pg YTX on-column which corresponded to 3 ng/g shellfish tissue.  相似文献   

9.
A simple and rapid method for determining six ergot alkaloids and four of their respective epimers was developed for rye and wheat. The analytes were extracted from the sample matrix with ACN/ammonium carbonate solution. The extract was purified with a commercial push‐through SPE column (Mycosep® 150 Ergot). After concentration and filtration steps, the final separation of the analytes was achieved with ultra‐performance LC‐MS/MS. The chromatographic separation of the ergot alkaloids was achieved in 4.5 min. The method performance proved satisfactory in the preliminary validation. The calculated LOQs were low ranging from 0.01 to 1.0 μg/kg for wheat and from 0.01 to 10.0 μg/kg for rye. At the concentration levels of 10, 50 and 200 μg/kg, the recoveries were between 80 and 120% in most cases and the within‐day repeatability (expressed as RSD) ranged between 1.3 and 13.9%. Despite the cleanup of the samples, some matrix effect was observed in the MS, highlighting the necessity of using matrix‐assisted standards. This is the first article to describe the application of the push‐through columns and ultra‐performance LC in the analysis of ergot alkaloids.  相似文献   

10.
The present article describes the development and validation of a LC–MS/MS method for the determination and confirmation of biomarkers of exposure to different types of xenobiotics in human urine. The method combines the use of a restricted access material (RAM) coupled on-line to a LC–IT-MS system; in this way, a rapid and efficient matrix cleanup was achieved, reducing manual sample preparation to freezing and sample filtration. The ion trap (IT) mass spectrometry detector provided the selectivity, sensitivity and ruggedness needed for confirmatory purposes. The on-line RAM-LC–MS/MS method developed here has been validated as a quantitative confirmatory method according to the European Union (EU) Decision 2002/657/EC. The validation steps included the verification of linearity, repeatability, specificity, trueness/recovery, reproducibility, stability and ruggedness in fortified urine samples. Repeatability and within-laboratory reproducibility, measured as intraday and interday precisions, were evaluated at two concentration levels, being 12.7% or below at the concentration corresponding to the quantification limits. Matrix effects and non-targeted qualitative analyses were also evaluated in fortified urine samples. Decision limits (CCα) and detection capabilities (CCβ) were in the range of 3.6–16.5 and 6.0–28.1 ng mL−1 respectively. The results of the validation process revealed that the proposed method is suitable for reliable quantification and confirmation of biomarkers of exposure to xenobiotics in human urine at low ng mL−1 levels. In addition, working in Data-Dependent Scan mode the proposed method can be used for the screening of these compounds in urine samples.  相似文献   

11.
A solid-phase extraction (SPE) method for the enrichment and clean-up of lipophilic marine biotoxins from extracts of different species of bivalve molluscs and processed shellfish products was developed. Okadaic acid (OA), pectenotoxin2 (PTX2), azaspiracid1 (AZA1) and yessotoxin (YTX) were determined by LC–MS/MS in hydrolyzed and non-hydrolyzed extracts. Applying a concentration factor of 10 the limit of quantification for the four toxins was determined to be 1 μg/kg. An organized in-house ring trial proved transferability of the method protocol and satisfactory results for all four toxins with a relative standard deviation (RSD) of 5–12%. The precision of the whole method including LC–MS detection was determined by processing seven independent extractions analyzed in independent sequences. RSD ranged between 12% and 24%. This SPE method was tested within a concentration range corresponding to the range of the current European Union regulatory limits (up to 160 μg/kg for the OA group), but it would also be applicable to a lower μg/kg range which is important in view of a possible decrease of regulatory limits as proposed by a working group of the European Food Safety Authority. The potential of SPE as a cleaning tool to cope with matrix effects in LC–MS/MS was studied and compared to liquid–liquid portioning.  相似文献   

12.
A single-laboratory validation is reported for an LC/MS/MS quantification of six brevetoxins in four matrixes (Greenshell mussel, eastern oyster, hard clam, and Pacific oyster). Recovery and precision data were collected from seven analytical batches using shellfish flesh at 0.05 mg/kg. Method recoveries and within-laboratory reproducibility ranged from 73 to 112%, with an RSD between 14 and 18% for brevetoxin-3, brevetoxin B5, brevetoxin B2, and S-desoxy brevetoxin B2. The recovery and within-laboratory reproducibility for brevetoxin-2 was 61%, with an RSD of 27%. Brevetoxin B1 gave an RSD of 12%, but no reference material was available and this toxin was only recorded in a hard clam sample naturally contaminated with brevetoxins. One naturally contaminated sample of each shellfish matrix, with brevetoxin levels ranging from 0.012 to 9.9 mg/kg, was tested in multiple batches, and the RSDs were similar to those for fortified samples at 0.05 mg/kg. Comparisons with limited data for the neurotoxic shellfish poisoning mouse bioassay for four naturally contaminated shellfish samples showed that the regulatory action limit of 0.8 mg/kg is conservative with respect to the bioassay regulatory limit of 20 mouse units/100 g.  相似文献   

13.
A simple and rapid gas chromatography/mass spectrometry (GC/MS) analysis method was developed for the determination of essential oils in the crude extract of Schizonepeta tenuifolia Briq (Sch.t.Briq). Five major volatiles (menthone, pulegone, 2-hydroxy-2-isopropenyl-5-methylcylohexanone, cis-pulegone oxide, and schizonal) were extracted and isolated from Sch.t.Briq as marker compounds for use in the quality control of herbal medicines. Various extraction techniques, such as solvent immersion, mechanical shaking, and sonication, were evaluated, and the greatest efficiency was observed with sonication extraction using petroleum ether. The dynamic range of the GC/MS method depended on the specific analyte; acceptable quantification was obtained between 10 and 1000 μg/mL for menthone and pulegone, and between 2.5 and 75.0 μg/mL for 2-hydroxy-2-isopropenyl-5-methylcylohexanone, cis-pulegone oxide, and schizonal. The method was deemed satisfactory by inter- and intra-day validation and exhibited both high accuracy and precision, with a relative standard deviation < 10%. Overall limits of detection were approximately 0.40–0.50 μg/mL, with a standard deviation (σ)-to-calibration slope (s) ratio (σ/s) of 3. The limit of quantitation in our experiments was approximately 2.5 μg/mL at a σ/s of 10. On the basement of method validation, 21 samples of Sch.t.Briq collected from markets in Korea were monitored for the quality control. In addition, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were performed on the analytical data of 21 different Sch.t.Briq samples in order to classify samples that were collected from different regions.  相似文献   

14.
建立了卷烟丝中烟草特有亚硝胺类化合物(TSNAs)的SPE-LC/MS/MS分析方法,可一次性对卷烟烟丝中4种TSNAs进行定量分析.该方法弥补了传统的烟丝中TSNAs分析方法样品处理步骤多,检出限高,适应范围窄等缺点.4种TSNA的回收率的范围在95.7%~99.2%之间;相对标准偏差均小于8%;方法检出限均低于1.0 ng/g.可应用于国内外各类型卷烟的分析.  相似文献   

15.
An effective analytical protocol using graphene‐based SPE coupled with HPLC‐MS/MS for determination of chloramphenicol (CAP) in aquatic products has been developed. In the present work, graphene was evaluated as SPE sorbents for the analytes enrichment and clean up. The target analytes were quantified by a triple‐quadrupole linear ion trap MS in multiple‐reaction monitoring mode. In addition, the proposed method was validated according to Commission Decision 2002/657/EC. The calibration curve was linear over the range of 0.5–100 ng/mL. The mean values of RSD of intra‐ and interday ranging from 1.48 to 4.29% and from 3.25 to 7.42% were obtained, respectively. In the three fortified levels, the recoveries of CAP ranging from 92.3 to 103.4% with RSDs ≤ 5.58% were obtained. The proposed method has been successfully applied to the analysis of CAP in several aquatic product samples, indicating that graphene was a potential SPE sorbent for the enrichment of trace residues in food samples.  相似文献   

16.
Ochratoxin A (OTA) is a toxic and potentially carcinogenic fungal toxin found in a variety of food commodities. A new sensitive method has been developed to quantify OTA in cereal products by reversed-phase liquid chromatography (LC) with mass spectrometric (MS) detection. Ochratoxin B was used as the internal standard. OTA was extracted from cereal products with acetonitrile-water, and the extract was diluted with a buffer; the diluted extract was cleaned up on an immunoaffinity column before LC/MS analysis. Two multiple-reaction monitoring transitions were used, one for quantification of OTA and one for confirmation of identity. The method was shown to be highly sensitive, with a low decision limit (CCalpha) of 0.012 microg/kg and a detection capability (CCbeta) of 0.021 microg/kg. Within-laboratory repeatability coefficient of variation values were 7.1, 3.7, and 3.1%, and the corresponding recoveries were 104, 106, and 103% for rice samples fortified with OTA at 0.05, 0.10, and 0.15 microg/kg, respectively. Method validation was performed according to the criteria of European Commission Decision 2002/657/EC. All criteria as presented in the Commission Decision were fulfilled. This method is the first fully validated method using immunoaffinity chromatography for cleanup and MS for detection in the analysis of cereals for OTA. The method was also successfully applied to cereal-derived products. The analytical results for determination of the OTA content of cereal products commercially available in Hong Kong are also reported.  相似文献   

17.
An RP LC‐ESI‐MS/MS method for the determination of the migration of 16 primary phthalic acid esters from plastic samples has been developed using distilled water, 3% acetic acid, 10% alcohol, and olive oil as food simulants. Detection limits were 1.6–18.5 μg/kg in distilled water, 1.4–17.3 μg/kg in 3% acetic acid, 1.4–19.2 μg/kg in 10% alcohol, and 31.9–390.8 μg/kg in olive oil. The RSDs were in the range of 0.07–11.28%. The real plastic products inspection showed that only few analyzed samples were phthalates contaminated. Bis‐2‐ethylhexyl ester and dibutyl phthalate were the common items migrated from the plastic products into food and feeds, but the migration concentrations were far below the limits set by European Union (1.5 mg/kg for bis‐2‐ethylhexyl ester and 0.3 mg/kg for dibutyl phthalate).  相似文献   

18.
A multi-residue method for the analysis of pesticides in tea was developed by online size exclusion chromatography (SEC)-GC/MS with full scan mode. The sample was fortified with chlorpyrifos-d(10) isotope internal standard and extracted by acetonitrile. After purification by primary secondary amine sorbent and solvent exchange by SEC mobile phase, the sample was detected by online SEC-GC/MS. The purification result of the online system was evaluated by comparing the correlation between Chinese cabbage and tea matrix. The factors for method optimization included sample preparation, matrix effects and the instrument parameters of each online component. Scatter plot was introduced in this study to directly illustrate the results of the condition optimization and matrix effects in the online system. For most of the pesticides, the average recoveries ranged from 70 to 130% and the RSD were below 15%. The feasibility of the application of full scan mode in multi-residue determination of trace amounts of pesticides (LODs below 0.01 mg/kg) in a complex matrix was discussed.  相似文献   

19.
An HPLC/MS/MS method has been developed and validated for the quantification and confirmation of nicarbazin and ionophores (lasalocid, monensin, salinomycin, and narasin) in eggs. Nicarbazin is determined in the negative electrospray mode with a basic mobile phase that supports creation of negative ions. Consequently, our ability to maintain instrument sensitivity over time has significantly improved. The analysis of the ionophores is done in the positive electrospray mode using ammonium buffer for HPLC separation. Monitoring ammonium adduct parent ions resulted in enhanced sensitivity and better reproducibility of the ionophore analysis. The validation of this improved HPLC/MS/MS method for the detection of nicarbazin and the ionophores demonstrated excellent precision of below 10% RSD and lower LOD values (microg/kg) for nicarbazin (0.018), lasalocid (0.015), monensin (0.015), salinomycin (0.033), and narasin (0.039).  相似文献   

20.
A highly sensitive and rapid ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method has been developed and validated for simultaneous quantification of the four main bioactive compounds, i.e. baicalin, baicalein, wogonoside and wogonin, in rat plasma after oral administration of Radix Scutellariae extract. Clarithromycin was used as an internal standard (IS). Plasma samples were processed by protein precipitation with methanol. The separation was performed on an Acquity BEH C18 column (100 × 2.1 mm, 1.7 μm) at a flow rate of 0.4 mL/min, using 0.1% formic acid–acetonitrile as mobile phase. The MS/MS ion transit ions monitored were 447.5 → 270.1 for baicalin, 270.1 → 168.1 for baicalein, 461.2 → 284.0 for wogonoside, 284.2 → 168.1 for wogonin and 748.5 → 158.1 for IS. Method validation was performed according to US Food and Drug Administration guidelines and the results met the acceptance criteria. The lower limit of quantification (LLOQ) achieved was 1.13 ng/mL for baicalin, 1.23 ng/mL for baicalein, 0.82 ng/mL for wogonoside and 0.36 ng/mL for wogonin. The calibration curves obtained were linear (r > 0.99) over the concentration range ~ 1–1000 ng/mL. The intra‐ and inter‐day precision was <15% and the accuracy was within ±14.7%. After validation, this method was successfully applied to a pharmacokinetic study of Radix Scutellariae extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号