首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the spin dynamics in the strongly correlated chain copper oxide SrCuO2 for energies up to greater, similar 0.6 eV using inelastic neutron scattering. We observe a gapless continuum of magnetic excitations, which is well described by the "Müller ansatz" for the two-spinon continuum in the S=1/2 antiferromagnetic Heisenberg spin chain. The lower boundary of the continuum extends up to approximately 360 meV, which corresponds to an exchange constant J=226(12) meV.  相似文献   

2.
We report a neutron scattering study of the long-wavelength dynamic spin correlations in the model two-dimensional S = 1/2 square lattice Heisenberg antiferromagnets Sr2CuO2Cl2 and Sr2Cu3O4Cl2. The characteristic energy scale, omega(0)(T/J), is determined by measuring the quasielastic peak width in the paramagnetic phase over a wide range of temperature ( 0.2 less similarT/J less similar0.7). The obtained values for omega(0)(T/J) agree quantitatively between the two compounds and also with values deduced from quantum Monte Carlo simulations. The combined data show scaling behavior, omega approximately xi(-z), over the entire temperature range with z = 1.0(1), in agreement with dynamic scaling theory.  相似文献   

3.
ZnCu(3)(OH)(6)Cl(2) (S=1/2) is a promising new candidate for an ideal Kagome Heisenberg antiferromagnet, because there is no magnetic phase transition down to approximately 50 mK. We investigated its local magnetic and lattice environments with NMR techniques. We demonstrate that the intrinsic local spin susceptibility decreases toward T=0, but that slow freezing of the lattice near approximately 50 K, presumably associated with OH bonds, contributes to a large increase of local spin susceptibility and its distribution. Spin dynamics near T=0 obey a power-law behavior in high magnetic fields.  相似文献   

4.
We show that at low temperatures T an inhomogeneous radial magnetic field with magnitude B gives rise to a persistent magnetization current around a mesoscopic ferromagnetic Heisenberg ring. Under optimal conditions, this spin current can be as large as gmicro(B)(T/ variant Planck's over 2pi )exp([-2pi(gmicro(B)B/delta)(1/2)], as obtained from leading-order spin-wave theory. Here g is the gyromagnetic factor, micro(B) is the Bohr magneton, and delta is the energy gap between the ground-state and the first spin-wave excitation. The magnetization current endows the ring with an electric dipole moment.  相似文献   

5.
We have measured the thermal conductivity of the spin S=1 chain compound Y(2)BaNiO(5). Analyzing the anisotropy of the thermal transport allows us to identify a definite spin-mediated thermal conductivity kappa(s) along the chain direction. The calculated spin-related energy diffusion constant D(E)(T) shows a broad peak around 120 K. Close to room temperature, D(E)(T) approaches the theoretically predicted high-temperature value, while scattering of spin excitations by magnetic impurities seems to be the major limiting factor of kappa(s) at low temperature.  相似文献   

6.
We investigated the nature of the freezing in the geometrically frustrated Heisenberg spin glass Y2(Mo2)O(7) by measuring the temperature dependence of the static internal magnetic field distribution above the spin-glass temperature, Tg, using the muon spin relaxation technique. The evolution of the field distribution cannot be explained by changes in the spin susceptibility alone and suggests a lattice deformation. This possibility is addressed by numerical simulations of the Heisenberg Hamiltonian with magnetoelastic coupling at T > 0.  相似文献   

7.
We have investigated the electron spin resonance (ESR) on single crystals of BaCu2Ge2O7 at temperatures between 300 and 2 K and in a large frequency band, 9.6-134 GHz, in order to test the predictions of a recent theory, proposed by Oshikawa and Affleck (OA) [Phys. Rev. Lett. 82, 5136 (1999)]], which describes the ESR in a spin-1/2 Heisenberg chain with the Dzyaloshinskii-Moriya interaction. We find, in particular, that the ESR linewidth, Delta H, displays a rich temperature behavior. As the temperature decreases from T(max)/2 approximately 170 to 50 K, Delta H shows a rapid and linear decrease, Delta H approximately T. At low temperatures, below 50 K, Delta H acquires a strong dependence on the magnetic field orientation and for H axially c it shows a (h/T)(2) behavior which is due to an induced staggered field h, according to OA's prediction.  相似文献   

8.
We present a Bethe Ansatz based investigation of a one-dimensional (1D) Heisenberg spin chain in a real 3D crystal lattice. We have shown that due to an influence of the lattice distortion on a crystalline field of ligands of magnetic ions, a Heisenberg antiferromagnetic spin chain is unstable under the appearance of a magnetic anisotropy of the “easy-plane” type. The effects of an external magnetic field and nonzero temperature onto such a phase transition are studied. Received: 19 January 1998 / Revised: 16 March 1998 / Accepted: 17 March 1998  相似文献   

9.
Spin-lattice relaxation of (129)Xe nuclei in solid natural xenon has been investigated in detail over a large range of paramagnetic O(2) impurity concentrations. Direct measurements of the ground state magnetic properties of the O(2) are difficult because the ESR (electron spin resonance) lines of O(2) are rather unstructured, but NMR measurements in the liquid helium temperature region (1.4-4 K) are very sensitive to the effective magnetic moments associated with the spin 1 Zeeman levels of the O(2) molecules and to the O(2) magnetic relaxation. From these measurements, the value of the D[Sz(2)-(1/3)S(2)] spin-Hamiltonian term of the triplet spin ground state of O(2) can be determined. The temperature and magnetic field dependence of the measured paramagnetic O(2)-induced excess line width of the (129)Xe NMR signal agree well with the theoretical model with the spin-Hamiltonian D=0.19 meV (2.3 K), and with the reasonable assumption that the E[S(x)(2)-S(y)(2)] spin-Hamiltonian term is close to 0 meV. An anomalous temperature dependence between 1.4 K and 4.2K of the (129)Xe spin-lattice relaxation rate, T(1n)(-1)(T), is also accounted for by our model. Using an independent determination of the true O(2) concentration in the Xe-O(2) solid, the effective spin lattice relaxation time (which will be seen to be transition dependent) of the O(2) at 2.3 K and 0.96 T is determined to be approximately 1.4 x 10(-8)s. The experimental results, taken together with the relaxation model, suggest routes for bringing highly spin-polarized (129)Xe from the low temperature condensed phase to higher temperatures without excessive depolarization.  相似文献   

10.
We investigated the properties of the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain using the spin-wave theory. The spin-wave excitation spectra, the sublattice magnetizations and the local bond energies of the model are calculated to be compared with the corresponding properties of the mixed spin (1, 1/2) chain for a range of α. The results demonstrate that all the properties show similar behaviours in the small α limit, so the properties of the mixed spin (1, 1/2) chain can be described using the spin-1/2 ferromagnetic-antiferromagnetic-antiferromagnetic alternating Heisenberg chain.  相似文献   

11.
We study Heisenberg antiferromagnets with nearest- (J1) and third- (J3) neighbor exchange on the square lattice. In the limit of spin S-->infinity, there is a zero temperature (T) Lifshitz point at J(3)=1/4J(1), with long-range spiral spin order at T=0 for J3>1/4J(1). We present classical Monte Carlo simulations and a theory for T>0 crossovers near the Lifshitz point: spin rotation symmetry is restored at any T>0, but there is a broken lattice reflection symmetry for 0< or =T相似文献   

12.
Electron paramagnetic resonance measurements of NiCl2-4SC(NH2)_{2} reveal the low-energy spin dispersion, including a magnetic-field interval in which the two-magnon continuum is within k_{B}T of the ground state, allowing a continuum of excitations over a range of k states, rather than only the k=0 single-magnon excitations. This produces a novel Y shape in the frequency-field EPR spectrum measured at T > or = 1.5 K. Since the interchain coupling J_{ perpendicular}相似文献   

13.
The magnetization, M(H< or =30 T,0.7< or =T< or =300 K), of (C5H12N)2CuBr4 has been used to identify this system as an S = 1/2 Heisenberg two-leg ladder in the strong-coupling limit, J( perpendicular) = 13.3 K and J( parallel) = 3.8 K, with H(c1) = 6.6 T and H(c2) = 14.6 T. An inflection point in M(H,T = 0.7 K) at half saturation, M(s)/2, is described by an effective XXZ chain. The data exhibit universal scaling behavior in the vicinity of H(c1) and H(c2), indicating that the system is near a quantum critical point.  相似文献   

14.
From thermodynamics, local spin density approximation+Hubbard U studies and exact diagonalizations of a five-band Hubbard model on CuO2 stripes we find that Li2ZrCuO4 (Li2CuZrO4 in traditional notation) is close to a ferromagnetic critical point. Analyzing its susceptibility chi(T) and specific heat cp(T,H) within a Heisenberg model, we show that the ratio of the 2nd to the 1st neighbor exchange integrals alpha=-J2/J1 approximately 0.3 is close to the critical value alphac=1/4. Comparing with related chain cuprates we explain the rather strong field dependence of cp, the monotonic downshift of the peak of chi(T), and its increase for alpha-->alphac+0.  相似文献   

15.
研究了两量子比特的海森堡XXX自旋链分别处于x方向和y方向均匀外磁场时系统的纠缠特性,并用负度N来度量。得到纠缠度N的解析表达式,并在此基础上进行数值计算。仔细讨论了磁场B、温度T和自旋耦合系数J对纠缠度N的影响。结果表明:纠缠度N会随着磁场|B|和温度T的增大而减小,但会随着自旋耦合系数J的增大而增大。另外,增大的J还会使临界磁场|Bc|和临界温度Tth变大。所以,我们可以通过调节B、T和J来控制热纠缠,这对固态系统中通过构建和选择参数调整系统的纠缠度具有一定的作用和意义。研究还发现,加在x方向均匀外磁场和加在y方向均匀外磁场对两量子比特的海森堡XXX自旋链的作用效果是一样的。  相似文献   

16.
An anion-radical salt (ARS) (N-Me-2,5-di-Me-Pz)(TCNQ)2, where Pz is pyrazine, was synthesized and its crystal structure was resolved. X-ray diffraction experiments on single crystals were performed. Heat capacity was measured in the temperature range from 2 to 300 K. Magnetisation and magnetic susceptibility were measured in the temperature range from 2 to 300 K and the low-temperature part was measured in magnetic fields from 5 mT to 5 T. The experimental results were explained in terms of dimerized Heisenberg spin chain model. Numerical calculations were performed and compared with experimental data.  相似文献   

17.
研究了三量子位和四量子位Heisenberg XY链中的基态纠缠与自旋压缩,给出了纠缠C和自旋压缩参数ξ2的解析表达式.结果表明,当外部磁场B大于某一临界值Bc时,纠缠与自旋压缩等价,即纠缠意味着自旋压缩,反之亦然.对三量子位情形,Bc=J[(4-3γ2)1/2-1];对四量子位情形,Bc可以通过数值方法进行求解.  相似文献   

18.
We report magnetization, specific heat, muon spin rotation, and Na NMR measurements on the S=3/2 rhombohedrally stacked Heisenberg antiferromagnet NaCrO2. This compound appears to be a good candidate for the study of isotropic triangular Heisenberg antiferromagnets with very weak interlayer coupling. While specific heat and magnetization measurements indicate the onset of a transition in the range Tc approximately 40-50 K, both muon spin rotation and NMR reveal a fluctuating crossover regime extending well below Tc, with a peak of relaxation rate T1(-1) around T approximately 25 K. This novel finding is discussed within the context of excitations in the triangular Heisenberg antiferromagnets.  相似文献   

19.
The in-plane nearest-neighbor Heisenberg magnetic coupling constant, J, of La2CuO4, Nd2CuO4, Sr2CuO2Cl2, YBa2Cu3O6, and undoped HgBa(2)Ca(n-1)Cu(n)O(2n+2+delta) ( n = 1,2,3) is calculated from accurate ab initio configuration interaction calculations. For the first four compounds, the theoretical J values are in quantitative agreement with experiment. For the Hg-based compounds the predicted values are -135 meV ( n = 1) and approximately -160 meV ( n = 2,3), the latter being much larger than in previous cases and, for n = 3, increasing with pressure. Nevertheless, the physics governing J in all these layered cuprates appears to be the same. Moreover, calculations suggest a possible relationship between J and T(c).  相似文献   

20.
The organic radical-ion salt DEOCC-TCNQF4 contains linear chains of stacked molecules with significant Heisenberg antiferromagnet interactions along the chain and extremely weak interactions between the chains. Zero-field muSR has confirmed the absence of long-range magnetic order down to 20 mK and field-dependent muSR is found to be consistent with diffusive motion of the spin excitations. The anisotropic spin dynamics and the upper boundary for magnetic ordering temperature both indicate interchain magnetic coupling /J'/<7 mK. As the intrachain coupling J is 110 K, /J'/J/ is significantly less than 10(-4). This system therefore provides one of the most ideal examples of the one-dimensional S=1/2 Heisenberg antiferromagnet yet discovered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号