首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We give a proof of transient fluctuation relations for the entropy production (dissipation function) in nonequilibrium systems, which is valid for most time reversible dynamics. We then consider the conditions under which a transient fluctuation relation yields a steady state fluctuation relation for driven nonequilibrium systems whose transients relax, producing a unique nonequilibrium steady state. Although the necessary and sufficient conditions for the production of a unique nonequilibrium steady state are unknown, if such a steady state exists, the generation of the steady state fluctuation relation from the transient relation is shown to be very general. It is essentially a consequence of time reversibility and of a form of decay of correlations in the dissipation, which is needed also for, e.g., the existence of transport coefficients. Because of this generality the resulting steady state fluctuation relation has the same degree of robustness as do equilibrium thermodynamic equalities. The steady state fluctuation relation for the dissipation stands in contrast with the one for the phase space compression factor, whose convergence is problematic, for systems close to equilibrium. We examine some model dynamics that have been considered previously, and show how they are described in the context of this work.  相似文献   

2.
We compute the full Lyapunov spectra for a hard-disk fluid under temperature gradient and under shear. The Lyapunov exponents are calculated using a recently developed formalism for systems with elastic hard collisions. The system is thermalized by deterministic and time-reversible scattering at the boundary, whereas the bulk dynamics remains Hamiltonian. This thermostating mechanism allows for energy fluctuations around a mean value which is reflected by only two vanishing Lyapunov exponents in equilibrium and nonequilibrium. In nonequilibrium steady states the phase-space volume is contracted on average, leading to a negative sum of the Lyapunov exponents. Since the system is driven inhomogeneously we do not expect the conjugate pairing rule to hold, which is indeed shown to be the case. Finally, the Kaplan–Yorke dimension and the Kolmogorov–Sinai entropy are calculated from the Lyapunov spectra.  相似文献   

3.
We consider systems whose steady states exhibit a nonequilibrium phase transition from an active state to one-among an infinite number-absorbing state, as some control parameter is varied across a threshold value. The pair contact process, stochastic fixed-energy sandpiles, activated random walks, and many other cellular automata or reaction-diffusion processes are covered by our analysis. We argue that the upper-critical dimension below which anomalous fluctuation driven scaling appears is d(c)=6, in contrast to a widespread belief. We provide the exponents governing the critical behavior close to or at the transition point to first order in an epsilon =6-d expansion.  相似文献   

4.
5.
We study nonequilibrium steady states of lattice gases with nearest-neighbor interactions that are driven between two reservoirs. Density profiles in these systems exhibit oscillations close to the reservoirs. We demonstrate that an approach based on time-dependent density functional theory copes with these oscillations and predicts phase diagrams of bulk densities to a good approximation under arbitrary boundary-reservoir couplings. The minimum or maximum current principles can be applied only for specific bulk-adapted couplings. We show that they generally fail to give the correct topology of phase diagrams but can still be useful for getting insight into the mutual arrangement of different phases.  相似文献   

6.
We develop a controlled high-temperature expansion for nonequilibrium steady states of the driven lattice gas, the "Ising model" for nonequilibrium physics. We represent the steady state as P(eta) alpha e(-betaH(eta)-psi(eta)) and evaluate the lowest order contribution to the nonequilibrium effective interaction psi(eta). We see that, in dimensions d > or = 2, all models with nonsingular transition rates yield the same summable psi(eta), suggesting the possibility of describing the state as a Gibbs state similar to equilibrium. The models with the Metropolis rule show exceptional behavior.  相似文献   

7.
We employ Monte?Carlo simulations to study the nonequilibrium relaxation of driven Ising lattice gases in two dimensions. Whereas the temporal scaling of the density autocorrelation function in the nonequilibrium steady state does not allow a precise measurement of the critical exponents, these can be accurately determined from the aging scaling of the two-time autocorrelations and the order parameter evolution following a quench to the critical point. We obtain excellent agreement with renormalization group predictions based on the standard Langevin representation of driven Ising lattice gases.  相似文献   

8.
We study the nonequilibrium steady state realized in a general stochastic system attached to multiple heat baths. Starting from the detailed fluctuation theorem, we derive concise and suggestive expressions for the corresponding stationary distribution which are correct up to the second order in thermodynamic forces. The probability of a microstate eta is proportional to exp[Phi(eta)] where Phi(eta)=-[under summation operator]kbeta_{k}E_{k}(eta) is the excess entropy change. Here, E_{k}(eta) is the difference between two kinds of conditioned path ensemble averages of excess heat transfer from the kth heat bath whose inverse temperature is beta_{k}. This result can be easily extended to steady states maintained with other sources, e.g., particle current driven by an external force. Our expression may be verified experimentally in nonequilibrium states realized, for example, in mesoscopic systems.  相似文献   

9.
We introduce and test an algorithm that adaptively estimates large deviation functions characterizing the fluctuations of additive functionals of Markov processes in the long-time limit. These functions play an important role for predicting the probability and pathways of rare events in stochastic processes, as well as for understanding the physics of nonequilibrium systems driven in steady states by external forces and reservoirs. The algorithm uses methods from risk-sensitive and feedback control to estimate from a single trajectory a new process, called the driven process, known to be efficient for importance sampling. Its advantages compared to other simulation techniques, such as splitting or cloning, are discussed and illustrated with simple equilibrium and nonequilibrium diffusion models.  相似文献   

10.
We elaborate and compare two approaches to nonequilibrium thermodynamics, the two-generator bracket formulation of time-evolution equations for averages and the macroscopic fluctuation theory, for a purely dissipative isothermal driven diffusive system under steady state conditions. The fluctuation dissipation relations of both approaches play an important role for a detailed comparison. The nonequilibrium Helmholtz free energies introduced in these two approaches differ as a result of boundary conditions. A Fokker-Planck equation derived by projection operator techniques properly reproduces long range fluctuations in nonequilibrium steady states and offers the most promising possibility to describe the physically relevant fluctuations around macroscopic averages for time-dependent nonequilibrium systems.  相似文献   

11.
We develop a method for extracting the steady nonequilibrium current from studies of driven isolated systems, applying it to the model of a one-dimensional Mott insulator at high temperatures. While in the nonintegrable model the nonequilibrium conditions can be accounted for by internal heating, the integrability leads to a strongly nonlinear dc response with a vanishingly small dc conductivity in the linear-response regime. The finding is consistent with equilibrium results for the dc limit of the optical conductivity determined in the presence of a weak and decreasing perturbation.  相似文献   

12.
Irreversibility and fluctuation theorem in stationary time series   总被引:1,自引:0,他引:1  
The relative entropy between the joint probability distribution of backward and forward sequences is used to quantify time asymmetry (or irreversibility) for stationary time series. The parallel with the thermodynamic theory of nonequilibrium steady states allows us to link the degree of asymmetry in the time signal with the distance from equilibrium and the lack of detailed balance among its states. We study the statistics of time asymmetry in terms of the fluctuation theorem, showing that this type of relationship derives from simple general symmetries valid for any stationary time series.  相似文献   

13.
The influence of intermediate to high electric fields on the optical properties of direct-gap strongly-polar III-Nitrides is characterized. It is manifested through the dependence on the electric field of the nonequilibrium thermodynamic state of the system, which is characterized by a nonequilibrium effective temperature (quasi-temperature), quasi-chemical potentials and drift velocities of the excited carriers driven away from equilibrium, and the quasi-temperatures of the phonons in the different branches. In particular, we analyze the processes of absorption and luminescence, and a field-dependent Roosbroeck-Shockley relation is derived. It is shown that it is possible to measure the carriers’ drift velocity and quasi-temperature, in the steady state or with ultrafast time resolution, resorting to luminescence together with Raman scattering experiments.  相似文献   

14.
Baths produce friction and random forcing on particles suspended in them. The relation between noise and friction in (generalized) Langevin equations is usually referred to as the second fluctuation–dissipation theorem. We show what is the proper nonequilibrium extension, to be applied when the environment is itself active and driven. In particular we determine the effective Langevin dynamics of a probe from integrating out a steady nonequilibrium environment. The friction kernel picks up a frenetic contribution, i.e., involving the environment’s dynamical activity, responsible for the breaking of the standard Einstein relation.  相似文献   

15.
16.
We obtain the exact probability exp[-LF([rho(x)])] of finding a macroscopic density profile rho(x) in the stationary nonequilibrium state of an open driven diffusive system, when the size of the system L-->infinity. F, which plays the role of a nonequilibrium free energy, has a very different structure from that found in the purely diffusive case. As there, F is nonlocal, but the shocks and dynamic phase transitions of the driven system are reflected in nonconvexity of F, in discontinuities in its second derivatives, and in non-Gaussian fluctuations in the steady state.  相似文献   

17.
Just as transition rates in a canonical ensemble must respect the principle of detailed balance, constraints exist on transition rates in driven steady states. I derive those constraints, by maximum information-entropy inference, and apply them to the steady states of driven diffusion and a sheared lattice fluid. The resulting ensemble can potentially explain nonequilibrium phase behavior and, for steady shear, gives rise to stress-mediated long-range interactions.  相似文献   

18.
We determine the initial condition on the laminar-turbulent boundary closest to the laminar state using nonlinear optimization for plane Couette flow. Resorting to the general evolution criterion of nonequilibrium systems we optimize the route to the statistically steady turbulent state, i.e., the state characterized by the largest entropy production. This is the first time information from the fully turbulent state is included in the optimization procedure. We demonstrate that the optimal initial condition is localized in space for realistic flow domains.  相似文献   

19.
We construct a formal mode coupling theory for hydrodynamic systems which includes contributions from all powers of the hydrodynamic variables. This theory is applied to nonequilibrium steady state systems. A generalization of the local equilibrium distribution is used to describe the nonequilibrium state. This distribution independently constrains all moments of the hydrodynamic variables. The infinite hierarchy of equations for the moments of the hydrodynamic variables is truncated using an inverse system size expansion. Explicit results are obtained for the time correlation functions of fluids with a linear temperature gradient or a linear shear. These results agree with previous studies of these steady states.  相似文献   

20.
《Physica A》2006,369(1):201-246
An overview is given of recent advances in nonequilibrium statistical mechanics on the basis of the theory of Hamiltonian dynamical systems and in the perspective provided by the nanosciences. It is shown how the properties of relaxation toward a state of equilibrium can be derived from Liouville's equation for Hamiltonian dynamical systems. The relaxation rates can be conceived in terms of the so-called Pollicott–Ruelle resonances. In spatially extended systems, the transport coefficients can also be obtained from the Pollicott–Ruelle resonances. The Liouvillian eigenstates associated with these resonances are in general singular and present fractal properties. The singular character of the nonequilibrium states is shown to be at the origin of the positive entropy production of nonequilibrium thermodynamics. Furthermore, large-deviation dynamical relationships are obtained, which relate the transport properties to the characteristic quantities of the microscopic dynamics such as the Lyapunov exponents, the Kolmogorov–Sinai entropy per unit time, and the fractal dimensions. We show that these large-deviation dynamical relationships belong to the same family of formulas as the fluctuation theorem, as well as a new formula relating the entropy production to the difference between an entropy per unit time of Kolmogorov–Sinai type and a time-reversed entropy per unit time. The connections to the nonequilibrium work theorem and the transient fluctuation theorem are also discussed. Applications to nanosystems are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号