首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electric and magnetic fields arising during uniform motion of a vortex lattice in a magnetic field oriented parallel to the conducting layers are calculated in an exactly solvable model. For low temperatures and high velocities of the lattice, features due to the excitation of plasma oscillations of the superconducting electrons appear in the current-voltage characteristic. Peaks associated with plasmon excitation and the Cherenkov effect are present in the radiation spectrum. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 12, 811–816 (25 December 1997)  相似文献   

2.
3.
We study analytically and numerically the phase-modulation properties of a classical Josephson tunnel junction biased in the zero-voltage state and phase locked to an external ac field. We show that the phase-locked state is being modulated in the transients, or in response to perturbations, and the modulation frequency is calculated as a function of relevant system parameters, such as microwave field amplitude. Our analysis demonstrates that the modulation of a phase-locked state in an entirely classical Josephson junction produces oscillations analogous to quantum mechanical Rabi oscillations, expected to be observed under the same conditions.  相似文献   

4.
We consider electromagnetic emission from a Josephson junction (JJ) in a resistive state in an external magnetic field and derive the radiation power from the dielectric layer inside a JJ directly into outside dielectric media. Matching the electric and magnetic fields at the JJ edges, we find dynamic boundary conditions for the phase difference in JJ. We find that the fraction of the power transformed into radiation is determined by the dissipation inside the JJ. It tends to unity as dissipation vanishes independently of the mismatch of the junction and dielectric media impedances.  相似文献   

5.
We derive the power of direct radiation into free space induced by Josephson oscillations in intrinsic Josephson junctions of layered superconductors. We consider the superradiation regime for a crystal cut in the form of a thin slice parallel to the c axis. We find that the radiation correction to the current-voltage characteristic in this regime depends only on crystal shape. We show that at a large number of junctions oscillations are synchronized providing high radiation power and efficiency in the terahertz frequency range. We discuss the crystal parameters and bias current optimal for radiation power and crystal cooling.  相似文献   

6.
We studied the commensurate semifluxon oscillations of Josephson flux-flow in Bi-2212 stacked structures near Tc as a probe of melting of a Josephson vortex lattice. We found that oscillations exist above 0.5 T. The amplitude of the oscillations is found to decrease gradually with the temperature and to turn to zero without any jump at T = T0 (3.5 K below the resistive transition temperature Tc), thus, indicating a phase transition of the second order. This characteristic temperature T0 is identified as the Berezinskii-Kosterlitz-Thouless (BKT) transition temperature, TBKT, in the elementary superconducting layers of Bi-2212 at zero magnetic field. On the basis of these facts, we infer that melting of a triangular Josephson vortex lattice occurs via the BKT phase with formation of characteristic flux loops containing pancake vortices and antivortices. The B-T phase diagram of the BKT phase found from our experiment is consistent with theoretical predictions.  相似文献   

7.
We experimentally investigate the temperature dependence of Rabi oscillations and Ramsey fringes in superconducting phase qubits. In a wide range of temperatures, we find that both the decay time and the amplitude of these coherent oscillations remain nearly unaffected by thermal fluctuations. In the two-level limit, coherent qubit response rapidly vanishes as soon as the energy of thermal fluctuations k(B)T becomes larger than the energy level spacing variant Planck's over h omega of the qubit. In contrast, a sample of much shorter coherence times displayed semiclassical oscillations very similar to Rabi oscillation, but showing a qualitatively different temperature dependence. Our observations shed new light on the origin of decoherence in superconducting qubits. The experimental data suggest that, without degrading already achieved coherence times, phase qubits can be operated at temperatures much higher than those reported till now.  相似文献   

8.
We study the Josephson oscillations of two coupled elongated condensates. Linearized calculations show that the oscillating mode uniform over the length of the condensates (uniform Josephson mode) is unstable: modes of non zero longitudinal momentum grow exponentially. In the limit of strong atom interactions, we give scaling laws for the instability time constant and unstable wave vectors. Beyond the linearized approach, numerical calculations show a damped recurrence behavior: the energy in the Josephson mode presents damped oscillations. Finally, we derive conditions on the confinement of the condensates to prevent instabilities.  相似文献   

9.
We describe a microwave photon counter based on the current-biased Josephson junction. The junction is tuned to absorb single microwave photons from the incident field, after which it tunnels into a classically observable voltage state. Using two such detectors, we have performed a microwave version of the Hanbury Brown-Twiss experiment at 4 GHz and demonstrated a clear signature of photon bunching for a thermal source. The design is readily scalable to tens of parallelized junctions, a configuration that would allow number-resolved counting of microwave photons.  相似文献   

10.
11.
We consider a single localized spin-1/2 between the singlet superconducting leads of a Josephson junction (e.g., a superconducting STM). For the spin subject to a dc magnetic field B parallel z, we study the spin dynamics and the possibility to measure the spin state via transport through the junction embedded in a dissipative circuit. Turning on the tunneling or a voltage bias induces oscillations of the Josephson current, with an amplitude sensitive to the initial value of the z component of the spin, S(z)=+/-1/2. At low temperatures, when effects of quasiparticles are negligible, this procedure realizes a quantum nondemolition measurement of S(z).  相似文献   

12.
The problem of electron injection in Josephson junctions is considered theoretically. The effect of quantum oscillations of the chemical potential in a nonequilibrium Josephson junction is predicted. The oscillation spectrum is presented by a single Josephson mode if the transparency of the oxide barrier is not too high.  相似文献   

13.
14.
Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a continuously observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of Rabi spectroscopy enabled a long coherence time of about 2.5 micros, corresponding to an effective qubit quality factor approximately 7000.  相似文献   

15.
It is shown that the interaction of the Josephson degrees of freedom with states of condensate motion can produce their equilibrium bound states. As a result of the appearance of these states, first, the tunneling splitting is significantly increased in double-well trapped condensates. Second, the bound states can realize an absolute minimum of the thermodynamic energy for a sufficiently strong interaction. Transition to the new ground state is a second-order phase transition. The existence of the bound state leads to an equilibrium distortion of the condensate shape. This implies that the Josephson states can be detected by observing the change in the condensate shape.  相似文献   

16.
17.
In the present paper, it is shown that the interaction between classical anharmonic oscillations of a trapped condensate and excited Josephson states corresponding to a large enough initial imbalance of particle number generates their equilibrium bound state. The dynamics of the system are determined by the self-consistent oscillations of the initial imbalance of the particle number and condensate shape. The existence of the bound state implies that the Josephson states can be detected by observing the change of the condensate shape.  相似文献   

18.
Attenuation of electron oscillations in a fully ionized plasma is investigated by solving linearized kinetic equation without external fields. The general dispersion relation for longitudinal plasma oscillations is obtained using the BGK model. Damping due to electron ion collisions is obtained with a correction term. It is also observed that damping rate decreases ask increases, which is in agreement with McBride.  相似文献   

19.
We predict the existence of surface waves in layered superconductors in the THz frequency range, below the Josephson plasma frequency omega J. This wave propagates along the vacuum-superconductor interface and dampens in both transverse directions out of the surface (i.e., towards the superconductor and towards the vacuum). This is the first prediction of propagating surface waves in any superconductor. These predicted surface Josephson plasma waves are important for different phenomena, including the complete suppression of the specular reflection from a sample (Wood's anomalies) and a huge enhancement of the wave absorption (which can be used as a THz detector).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号