首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
A thin-layer chromatographic (TLC) method with densitometric quantitation using the absorption reflectance mode at 280 nm was developed and validated for the determination of chloramphenicol residues in controlling pharmaceutical equipment cleanliness. Simulated samples at residue levels 0.5, 1, and 1.2 mg/m2 were prepared by spreading the calculated amount of chloramphenicol solution on a 10 dm2 stainless steel surface. After evaporation of the solvent, the residue was removed by 2 methanol-wetted cotton swabs, which were then extracted with methanol. The extract was applied on a high-performance TLC (HPTLC) silica gel F254 plate together with standards ranging from 10 to 60 ng. Plates were developed in a horizontal developing chamber from both sides (36 applications per plate) by using n-hexane-ethyl acetate (35 + 65, v/v) as developing solvent. The mean recovery (n=6) at 1 mg/m2 was 95.8%, and the coefficient of variation was 5.8%. The absolute detection limit was 3 ng, and the quantitation limit 10 ng. The method detection limit was 0.3 mg/m2 by swabbing 2.5 dm2 and 0.075 mg/m2 by swabbing 10 dm2. Chloramphenicol was stable on the plate 2 h before and 24 h after development. Additionally, it was stable during 7 days storage on the cotton swabs in the solvent at room temperature and in diluted standard solution stored in darkness at 4 degrees C. The method can be applied to routine control of pharmaceutical equipment cleanliness by sampling from the stainless steel surface areas of 2.5 to 10 dm2, and an acceptable residue limit of 1 mg/m2.  相似文献   

2.
This paper presents the applicability of thin-layer chromatographic methods with a subsequent densitometric or video densitometric quantitation for determination of residues in controlling pharmaceutical equipment cleanliness. Analytical methods were developed for monitoring residues of pentoxifylline at 10 mg/M2 and mebendazol at 1 mg/M2 on stainless steel surfaces. Simulated samples were prepared by addition of a calculated amount of pharmaceutical (as a solution) on a 35 x 35 cm stainless steel surface. After evaporation of solvent, the residues were wiped with wetted cotton. The cotton was extracted with dichloromethan-methanol (1 + 1). Filtered extract was concentrated by vacuum evaporation and an aliquot applied to the plate, where standards were also applied. In the narrow concentration range near the acceptable residue limits, linear calibration curve could be obtained for both substances. The mean recovery (n = 4) obtained by densitometric quantitation was 93.4% for pentoxifylline and 85.6% for mebendazol, with coefficients of variation of 3.5 and 8.3%, respectively. Results of video densitometric quantitation did not differ significantly. However, data acquisition and evaluation is faster compared with densitometry and allows better archiving possibilities as required by the regulatory authorities. Both quantitation modes can be applied to routine control of pharmaceutical equipment cleanliness.  相似文献   

3.
A densitometric high performance thin-layer chromatography (HPTLC) method was developed and validated for the quantitative analysis of haloperidol in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone/chloroform/n-butanol/acetic acid glacial/water (5:10:10:2.5:2.5 v/v/v/v/v) as the mobile phase. Quantitative analysis was carried out at a wavelength of 254 nm. The method was linear in the 10-100 ng/microL range, with a determination coefficient of 0.999. The coefficients of variation for precision were not higher than 2.35%. The detection limit was 0.89 ng/microL, and the quantification limit was 2.71 ng/microL. The accuracy ranged from 97.76 to 100.33%, with a CV not higher than 4.50%. This method was successfully applied to quantify haloperidol in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision and accuracy for the quantitative determination of haloperidol in tablets.  相似文献   

4.
A densitometric high performance thin-layer chromatographic (HPTLC) method was developed and validated for quantitative analysis of L-DOPA in tablets. Chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of acetone-chloroform-n-butanol-acetic acid glacial-water (60:40:40:40:35 v/v/v/v/v) as mobile phase. Quantitative analysis was carried out at a wavelength of 497 nm. The method was linear between 100 and 500 ng/microL, with a correlation coefficient of 0.999. The intra-assay variation was between 0.26 and 0.65% and the interassay was between 0.52 and 2.04%. The detection limit was 1.12 ng/microL, and the quantification limit was 3.29 ng/microL. The accuracy ranged from 100.40 to 101.09%, with a CV not higher than 1.40%. The method was successfully applied to quantify L-DOPA in real pharmaceutical samples, including the comparison with HPLC measurements. The method was fast, specific, with a good precision, and accurate for the quantitative determination of L-DOPA in tablets.  相似文献   

5.
This paper presents a high-performance thin-layer chromatography (HPTLC) method with direct fluorescence measurement for the determination of norfloxacin. The method was validated for the monitoring of norfloxacin residues on stainless steel surfaces at the allowed limit of 10 mg of norfloxacin per square meter. However, it can be adapted for lower amounts of residues owing to the low detection limit of norfloxacin (about 5 ng) and can also be used for other surface materials. Test solutions were analyzed by the new HPTLC method and the known HPLC method for comparison. Accuracy and precision of the new HPTLC method, with a subsequent quantification by densitometer or video system, are comparable with those of the HPLC method.  相似文献   

6.
An instrumental planar chromatographic (HPTLC) method for quantitative analysis of clozapine in human serum was developed and validated. Clozapine was extracted with n-hexane-isoamyl alcohol (75:25 v/v). The chromatographic separation was achieved on precoated silica gel F 254 HPTLC plates using a mixture of chloroform and methanol (9:1 v/v) as mobile phase. Quantitative analyses were carried out by densitometry at a wavelength of 290 nm. The method was linear between 10 and 100 ng/spot, corresponding to 0.10 and 1.00 ng/microL of clozapine in human serum after extraction process and applying 10 microL to the chromatographic plates. The method correlation coefficient was 0.999. The intra-assay variation was between 2.10 and 3.33% (n = 5) and the interassay was between 2.67 and 4.44% (n = 9). The detection limit was 0.03 ng/microL, and the quantification limit was 0.05 ng/microL. The method proved to be accurate, with a recovery between 97.00 and 99.00%, with an RSD not higher than 7.22%, and was selective for the active principle tested. This method was successfully applied to quantify clozapine in patient serum samples. In conclusion, the method is useful for the quantitative determination of clozapine in serum.  相似文献   

7.
Canagliflozin (CNZ) is the first sodium–glucose co-transporter-2 inhibitor approved for treatment of type 2 diabetes mellitus. In the proposed work, a sensitive, rapid and validated high-performance thin-layer chromatography (HPTLC) method was established for the estimation of CNZ in human plasma for the first time. HPTLC analysis of CNZ and internal standard (sildenafil) was performed on glass coated silica gel 60 F254 HPTLC plates using a binary mixture of chloroform–methanol 9:1 (%, v/v) as the mobile phase. Densitometric detection was done at 295 nm. Retardation factor values were obtained as 0.22 and 0.52 for the CNZ and the IS, respectively. The linearity range of CNZ was obtained as 200–3,200 ng/ml. A simple protein precipitation method was used for the extraction of analyte from plasma using methanol. The proposed HPTLC technique was validated for linearity, accuracy, precision and robustness. The proposed HPTLC technique was successfully utilized for the assessment of pharmacokinetic profile of CNZ in rats after oral administration. After oral administration, the peak plasma concentration of CNZ was obtained as 1458.01 ng/ml in 2 h. The proposed HPTLC method could be applied to the study of the pharmacokinetic profile of pharmaceutical formulations containing CNZ.  相似文献   

8.
Currently, analytical scientists are paying special attention to reducing reliance on hazardous chemicals in various analytical methods. By embracing this concept, we developed an eco-friendly high-performancethin-layer chromatography (HPTLC) method as an alternative for the conventional HPLC method for the determination of an essential human micronutrient, niacin (NIA), which is used improve the lipid profile of patients. Furthermore, the proposed HPTLC method is capable of determining the structurally related impurities of NIA such as pyridine-2,5-dicarboxylic acid, isonicotinic acid, pyridine, and 5-ethyl-2-methylpyridine, which exhibit nephrotoxic and hepatotoxic effects. The separation of this challenging mixture was achieved on HPTLC sheets using a mixture of ethyl acetate/ethanol/ammonia solution (6:4:0.05, v/v/v), and then the dried plates were scanned at 254 nm. The analytical eco-scale assessment protocol was used to assess the greenness profile of the presented method and compare it with the reported HPLC method. The suggested method was found to be greener with regard to the consumption of solvents and the yielding of waste. The results suggest that the described method can be safely implemented for the routine analysis of NIA pharmaceutical dosage without the interference of potential impurities in quality control laboratories.  相似文献   

9.
Summary HPTLC densitometry and HPLC are considered for the determination of azidothymidine and its degradation product thymine in pharmaceutical dosage forms. In HPTLC the substances were separated on silica gel with fluorescence indicator in methanol-chloroform (1090) and methanol-chloroform (1585) systems. Absorbance measurement (detection of reflectance) of the separated substances was carried outin situ at 268 nm using four-level calibration (external standard, linear regression function) in the concentration range of 25–100 ng thymine/spot and using single-level calibration (external standard) at the concentration of 100 ng azidothymidine/spot. HPLC was carried out using RP-18 stationary phase and methanol+aqueous 0.03 mol/l KH2PO4 (18+82, v/v) as the mobile phase. The temperature was 50°C and the detection wavelength 266 nm. The detection limit of thymidine was 0.05%. The concentration range for azidothymidine was 0.5–1.5 mg/ml and for thymine 1–40 g/ml (for an injection volume of 10 l). The results were evaluated by linear regression analysis.  相似文献   

10.
Determination of tinidazole in human serum by high-performance thin-layer chromatography (HPTLC) is presented. It includes use of 10 x 10 cm plates coated with silica gel 60 and chloroform-acetonitrile-acetic acid (60 + 40 + 2) as mobile phase. Quantitation was performed by densitometry at 320 nm. The linearity (1-10 ng), precision (6%), reproducibility (5%), recovery (96%), and detection limit (1 mg/L) of tinidazole determination by HPTLC were comparable with corresponding method parameters by reversed-phase HPLC. A satisfactory correlation was found between the 2 analytical methods. The procedure was used to quantitate tinidazole in patient sera.  相似文献   

11.
The method for determination of chlorpyrifos is validated and dissipation behaviour of residue in scented rose and percent transfer in different products is described. GC-electron-capture detection with a HP-1, 30 m x 0.53 mm, 3.0 microm capillary column and nitrogen at 1 ml/min was used in the study. Plant matrices studied were: leaves, flowers, soil, rose water, absolute and concrete. Detector response linearity and sensitivity, limit of detection and determination, percent recovery were determined based on area response (mm2) of the standard. Analytical field and laboratory samples (rose water by hydro-distillation of the flowers, concrete and absolute by hexane extraction and condensation) were analysed for evaluation of the method. Samples were extracted with acetone, partitioned with water, saturated sodium chloride solution and dichloromethane. The organic layer was rotary-evaporated to 2 ml for cleanup with silica-carbon column. The column was eluted with dichloromethane-toluene-acetone (10:2:2, v/v/v) and the derived solution was rotary-evaporated to 5 ml for end analysis. Matrix enhancement effect was observed for leaf and soil samples for which corrective approach was followed to compensate for overestimation of the residue. Limit of detection for chlorpyrifos standard was 0.05 mg/l with good linearity of detector response (R2 = 0.99). Percent recovery ranged from 78 to 117% in different plant matrices (fortification level 1, 4 and 8 mg/l). Dissipation behaviour showed that chlorpyrifos was below detection limit by the 12th day of application on the scented rose with half life of 3.40 days on leaves and 3.10 days on flowers at 0.1% dosage. Percent transfer studies showed that 5.71, 46.91 and 38.80% of the residue from flowers was transferred to rose water, concrete and absolute, respectively.  相似文献   

12.
刘茜  刘晓宇  邱朝坤  王小宝  任红敏 《色谱》2009,27(4):476-479
建立了鲫鱼肌肉中残留的辛硫磷的基质固相分散-高效液相色谱-二极管阵列检测(MSPD-HPLC-DAD)的分析方法。通过优化样品处理条件,确定选取0.50 g鲫鱼肌肉样品与1.5 g弗罗里硅土、0.5 g无水硫酸钠混合研磨,并采用丙酮-正己烷溶液(体积比为40:60)为洗脱剂,洗脱剂用量为25 mL。优选的最佳色谱条件为:ODS色谱柱(250 mm×4.6 mm,5 μm),流动相为甲醇-水(体积比为50:50),流速0.6 mL/min,检测波长270 nm,进样量为20 μL。在上述条件下,辛硫磷质量浓度在0.01~10 mg/L范围内与响应信号呈良好的线性关系(r20.9994),检出限为3.3 μg/kg;相对标准偏差为1.1%~6.3%(n7);3个添加水平(0.05,0.1,1 mg/kg)下得到的回收率为88%~112%。该方法操作简单,耗时少,精密度高,符合农残分析的要求。  相似文献   

13.
A selective and sensitive analytical procedure for rapid arsenic determination by gas-diffusion flow injection analysis with amperometric detection was developed. The method is based on the arsenite reduction by NaBH(4). Derived arsine diffuses through a PTF membrane into the acceptor flow stream and is amperometrically determined on a platinum working electrode. The limit of detection (3 sigma) at room temperature was 5 microg/dm(3) of As(III). The relative standard deviation for a 1 mg/dm(3) As(III) standard was 1.96% for six repetitive injections. Arsenic(V) was determined after its prereduction with potassium iodide. Arsenic determination was not interferred with by 1 mg/dm(3) Sb(III), 5 mg/dm(3) Sn(II), 10 mg/dm(3) Se(IV), 1 mg/dm(3) As(V), 1 mg/dm(3) hydrasine, 1 mg/dm(3) Fe(II) or 0.5 mg/dm(3) Fe(III) solution. The throughput of this method was 60 analyses per hour. This method was successfully applied to arsenic determination in some power plant waste water samples.  相似文献   

14.
A sensitive, simple, rapid, and efficient high-performance thin-layer chromatographic (HPTLC) method has been developed and validated for the analysis of berberine in marketed Ayurvedic formulations containing Berberis aristata DC for regulatory purposes. Chromatography of methanolic extracts of these formulations was performed on silica gel 60 F254 aluminum-backed TLC plates of 0.2 mm layer thickness. The plate was developed up to 66 mm with the ternary-mobile phase butanol-acetic acid-water (8 + 1 + 1, v/v/v) at 33 +/- 5 degrees C with 5 min of tank saturation. The marker, berberine, was quantified at its maximum absorbance of 350 nm. The limit of detection and limit of quantitation values were found to be 5 and 10 ng/spot. The linear regression analysis data for the calibration plot showed a good linear relationship with correlation coefficient = 0.9994 in the concentration range of 10 to 50 ng/spot for berberine with respect to peak area. The instrumental precision was found to be 0.49% coefficient of variation (CV), and repeatability of the method was 0.73% CV. Recovery values from 98.27 to 99.11% indicate excellent accuracy of the method. The developed HPTLC method is very accurate, precise, and cost-effective, and it has been successfully applied to the assay of marketed formulations containing B. aristata for determination of berberine.  相似文献   

15.
A thin-layer chromatographic assay for the determination of ofloxacin in human plasma and pleural fluid is described. After extraction of ofloxacin from samples with dichloromethane, chromatography was performed on thin-layer plates (silica gel) with a mobile phase consisting of ethanol and water; the tank atmosphere was equilibrated with concentrated ammonia. The precision of the assay could be considerably increased along with the measured fluorescence intensity of ofloxacin by spraying the plate with a citric acid solution and dipping it into paraffin or using a mixture of both components. Peaks were quantified by densitometric evaluation of the chromatograms. The method shows a very low limit of detection (1 ng/ml) as well as good precision and linearity in the range 0.001-2.0 micrograms/ml for both plasma and pleural fluid.  相似文献   

16.
《Analytical letters》2012,45(12):1831-1843
Abstract

Methods for determination of oxazepam in pharmaceutical formulation by derivative ultraviolet (UV) spectrophotometry as well as high-performance thin-layer chromatography (HPTLC) UV densitometry were described. For UV-derivative spectrophotometry, some derivatives and wavelengths may be recommended for routine quality control of the drug of interest. On the other hand, HPTLC provided good results, but only when the calibration curve was estimated using nonlinear regression analysis. The HPTLC method was developed with silica F254 plates, a mobile phase of benzene/ethanol (5:1, v/v), and densitometric detection at 204 nm receiving R f  = 0.47. Developed methods were validated and found to be sufficiently precise and reproducible for established conditions.  相似文献   

17.
This paper describes a sensitive, selective, specific, robust, and validated densitometric high-performance thin-layer chromatographic (HPTLC) method for the simultaneous determination of 3 key withanolides, namely, withaferin-A, 12-deoxywithastramonolide, and withanolide-A, in Ashwagandha (Withania somnifera) plant samples. The separation was performed on aluminum-backed silica gel 60F254 HPTLC plates using dichloromethane-methanol-acetone-diethyl ether (15 + 1 + 1 + 1, v/v/v/v) as the mobile phase. The withanolides were quantified by densitometry in the reflection/absorption mode at 230 nm. Precise and accurate quantification could be performed in the linear working concentration range of 66-330 ng/band with good correlation (r2 = 0.997, 0.999, and 0.996, respectively). The method was validated for recovery, precision, accuracy, robustness, limit of detection, limit of quantitation, and specificity according to International Conference on Harmonization guidelines. Specificity of quantification was confirmed using retention factor (Rf) values, UV-Vis spectral correlation, and electrospray ionization mass spectra of marker compounds in sample tracks.  相似文献   

18.
The electrochemical oxidation of ibuprofen at a boron‐doped diamond electrode (BDDE) and its voltammetric determination is reported for the first time. A well‐defined oxidation peak was observed at around 1.6 V in 0.1 mol L?1 H2SO4 solution with 10 % (v/v) ethanol at the BDDE surface activated by either cathodic or anodic pretreatments. A differential‐pulse voltammetric method for the determination of ibuprofen in pharmaceutical formulations was optimized with a detection limit of 5 µmol L?1 and compared with the British Pharmacopeia method.  相似文献   

19.
A simple, rapid, and accurate high-performance thin-layer chromatography (HPTLC) method is described for the simultaneous determination of levofloxacin hemihydrate and ornidazole in tablet dosage form. The method is based on the HPTLC separation of the two drugs followed by densitometric measurements of their spots at 298 nm. The separation is carried out on Merck TLC aluminium sheets of silica gel 60 F254 using n-butanol-methanol-ammonia (5:1:1.5, v/v/v) as mobile phase. The linearity is found to be in the range of 50-250 and 100-500 ng/spot for levofloxacin hemihydrate and ornidazole, respectively. The method is successively applied to pharmaceutical formulation because no chromatographic interferences from the tablet excipients are found. The suitability of this HPTLC method for the quantitative determination of the compounds is proved by validation in accordance with the requirements laid down by International Conference on Harmonization (ICH) guidelines.  相似文献   

20.
A simplified determining/identifying method for residual sulphamethazine (SMZ) and sulphadimethoxine (SDM) in milk by using a high-performance liquid chromatography (HPLC) with a photo-diode array detector was presented. Both sulphonamides in cow's milk samples were extracted by only stirring with ethanol followed by an Ultrafree-MC/Biomax as a centrifugal ultra-filtration unit. For determination/identification of SMZ and SDM, a Mightysil RP-18 GP Aqua column and a mobile phase of 25% (v/v) ethanol solution (in water) with a photo-diode array detector was used. Average recoveries from spiked SMZ and SDM (10-1000 ng/ml each drug) were > or = 83% with the relative standard deviations between 1.4 and 3.7%. The limit of quantitation (LOQ) were calculated to be 5 ng/ml for SMZ and 10 ng/ml for SDM, respectively. The values were below the MRL/tolerance (SMZ, 25 ng/ml; SDM, 10 ng/ml). The total time and solvent required for the analysis of one sample were <35 min and <2 ml of only ethanol, respectively. No toxic solvents were used. The developed procedure was harmless to the human and environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号