首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The nature of the excited states of [Ru(bpy)2dppz]2+ has been investigated using density functional theory with the hybrid functional B3LYP. The excitations were studied via linear response theory (TDDFT) and DeltaSCF calculations and the solvent effects were introduced by embedding the molecule in a continuum dielectric medium. It was found that the solvent effects are critical in understanding the nature of the excitations. For the molecule in ethanol, the lowest absorption predicted by TDDFT is a dark state 3pi --> pi with the electron and hole spread over the dppz ligand. Next come the excitations of 3MLCT between the ruthenium and the dppz and finally the 3MLCT excitations between the ruthenium and the bpy ligands not associated with the phenazine. Using deltaSCF calculations two low-lying excited states were identified and the geometry optimized in the presence of the continuum medium. At the optimal geometry the lowest excited state is 3MLCT (Ru --> dppz). The 3pi --> pi state is found only 0.026 eV higher.  相似文献   

2.
We report temperature-dependent excited-state lifetime measurements on [Ru(bpy)(2)dppz](2+) in both protic and aprotic solvents. These experiments yield a unifying picture of the excited-state photophysics that accounts for observations in both types of solvent. Our measurements support the notion of bpy-like and phz-like states associated with the dppz ligand and show that the ligand orbital associated with the bright state is similar in size to the corresponding orbital in the (3)MLCT state of [Ru(bpy)(3)](2+). In contrast to the current thinking, the experiments presented here indicate that the light-switch effect is not driven by a state reversal. Rather, they suggest that the dark state is always lowest in energy, even in aprotic solvents, and that the light-switch behavior is the result of a competition between energetic factors that favor the dark state and entropic factors that favor the bright (bpy) state.  相似文献   

3.
The quenching of the luminescence of [Ru(phen)(2)dppz](2+) by structural homologue [Ru(phendione)(2)dppz](2+), when both complexes are bound to DNA, has been studied for all four combinations of Delta and Lambda enantiomers. Flow linear dichroism spectroscopy (LD) indicates similar binding geometries for all the four compounds, with the dppz ligand fully intercalated between the DNA base pairs. A difference in the LD spectrum observed for the lowest-energy MLCT transition suggests that a transition, potentially related to the final localization of the excited electron to the dppz ligand in [Ru(phen)(2)dppz](2+), is overlaid by an orthogonally polarized transition in [Ru(phendione)(2)dppz](2+). This would be consistent with a low-lying LUMO of the phendione moiety of [Ru(phendione)(2)dppz](2+) that can accept the excited electron from [Ru(phen)(2)dppz](2+), thereby quenching the emission of the latter. The lifetime of excited Delta-[Ru(phen)(2)dppz](2+) is decreased moderately, from 664 to 427 ns, when bound simultaneously with the phendione complex to DNA. The 108 ns lifetime of opposite enantiomer, Lambda-[Ru(phen)(2)dppz](2+), is only shortened to 94 ns. These results are consistent with an average rate constant for electron transfer of approximately 1.10(6) s(-1) between the phenanthroline- and phendione-ruthenium complexes. At binding ratios close to saturation of DNA, the total emission of the two enantiomers is lowered equally much, but for the Lambda enantiomer, this is not paralleled by a decrease in luminescence lifetime. A binding isotherm simulation based on a generalized McGhee-von Hippel approach shows that the Delta enantiomer binds approximately 3 times stronger to DNA both for [Ru(phendione)(2)dppz](2+) and [Ru(phen)(2)dppz](2+). This explains the similar decrease in total emission, without the parallel decrease in lifetime for the Lambda enantiomer. The simulation also does not indicate any significant binding cooperativity, in contrast to the case when Delta-[Rh(phi)(2)bipy](3+) is used as quencher. The very slow electron transfer from [Ru(phen)(2)dppz](2+) to [Ru(phendione)(2)dppz](2+), compared to the case when [Rh(phi)(2)phen](3+) is the acceptor, can be explained by a much smaller driving free-energy difference.  相似文献   

4.
5.
<正>Electrochemical assembly of[Ru(bpy)_2dppz]~(2+){bpy=2,2'-bipyridine,dppz=dipyrido[3,2-a:2',3'-c]phenazine} on an ITO electrode in the presence of guanine and photoelectrochemical properties of the assembled layer were investigated.It has been found that[Ru(bpy)_2dppz]~(3+/2+) can be assembled onto the ITO electrode by the method of repetitive voltammetric sweeping,and the assembly is enhanced by guanine.The peak currents of prewaves increase linearly up to a guanine concentration of 0.25 mmol/L.More importantly,upon illumination with 470 nm light source and at an applied potential of 0.2 V,cathodic current for the fabricated layer on the ITO electrode indicate a linear enhancement with the rise of guanine concentration.Meanwhile,[Ru(bpy)_2dppz]~(2+) can be served as an excellent mediator to prompt the oxidation of guanine,and the mediated peak current increases linearly with added guanine concentration from 0.01 to 0.25 mmol/L.In addition,the assembly mechanism of[Ru(bpy)_2dppz]~(2+) on the ITO electrode associated with the oxidation of guanine and the assistance of light irradiation were discussed.  相似文献   

6.
7.
DNA oxidation has been investigated in the medium of cationic reverse micelles (RMs). The oxidative chemistry is photochemically initiated using the DNA intercalator bis(bipyridine)dipyridophenazine ruthenium(II) chloride ([Ru(bpy)2dppz]Cl2) bound to duplex DNA in the RMs. High-resolution polyacrylamide gel electrophoresis (PAGE) is used to reveal and quantify guanine (G) oxidation products, including 8-oxo-7,8-dihydroguanine (8OG). In buffer solution, the addition of the oxidative quenchers potassium ferricyanide or pentaamminechlorocobalt(III) dichloride leads to an increase in the amount of piperidine-labile G oxidation products generated via one-electron oxidation. In RMs, however, the yield of oxidatively generated damage is attenuated. With or without ferricyanide quencher in the RMs, the yield of oxidatively generated products is approximately the same. Inclusion of the cationic quencher [CoCl(NH3)5]2+ in the RMs increases the amount of oxidation products generated but not to the extent that it does in buffer solution. Under anaerobic conditions, all of the samples in RMs, with or without added oxidative quenchers, show decreased levels of piperidine-labile oxidation products, suggesting that the primary oxidant in RMs is singlet oxygen. G oxidation is enhanced in D2O and deuterated heptane and is diminished in the presence of sodium azide in RMs, also supporting 1O2 as the main G oxidant in RMs. Isotopic labeling experiments show that the oxygen atom in 8OG produced in RMs is not from water. The observed change in the G oxidation mechanism from a one-electron process in buffer to mostly 1O2 in RMs illustrates the importance of both DNA structure and DNA environment on the chemistry of G oxidation.  相似文献   

8.
9.
Cheng M  Euler WB 《Inorganic chemistry》2003,42(17):5384-5391
A series of [Ru(bpy)(2)](2+) complexes linked by a controlled number of azine units (one to seven) were synthesized and studied in the solution phase. Polymers and dimer model compounds were examined by cyclic voltammetry and IR, NMR, and visible-NIR spectroscopies. The NMR spectra and the cyclic voltammograms indicated that the Ru(2+) sites influenced the main chain properties at least 15 A from the metal site. The first oxidation in each material was assigned to a ligand-centered process, but DFT calculations suggested that the Ru(2+) has an important influence. The first oxidized state of the polymers has a spectroscopic band that is consistent with an intervalence transfer (IT) transition, but this absorption is not seen in the dimer model compounds. Thus, the IT feature is assigned to a ligand-ligand transition that spans several repeat units in the polymer.  相似文献   

10.
Rack JJ  Mockus NV 《Inorganic chemistry》2003,42(19):5792-5794
We report on phototriggered Ru-S --> Ru-O and thermal Ru-O --> Ru-S intramolecular linkage isomerizations in cis- and trans-[Ru(bpy)2(dmso)2]2+. The cis complex features only S-bonded sulfoxides (cis-[S,S]), whereas the trans isomer is characterized by S- and O-bonded dmso ligands. Both cis-[S,S] and trans-[S,O] exhibit photochromism at room temperature in dmso solution and ionic liquid (IL). Rates of reaction in IL were monitored by UV-visible spectroscopy and are similar to those reported in dmso solution (k(O-->S) ranges from approximately 10(-3) to 10(-4) s(-1)). Cyclic voltammetric measurements of cis-[S,S] and trans-[S,O] are consistent with an electrochemically triggered linkage isomerism mechanism. While both cis-[S,S] and trans-[S,O] are photochromic at room temperature, neither complex is emissive. However, upon cooling to 77 K, cis-[S,S] exhibits LMCT (ligand-to-metal charge transfer) emission typical of many ruthenium polypyridine complexes. In contrast to cis-[S,S], trans-[S,O] does not show any detectable emission even at 77 K.  相似文献   

11.
Singh TN  Turro C 《Inorganic chemistry》2004,43(23):7260-7262
The ligand-loss photochemistry of cis-[Ru(bpy)(2)(NH(3))(2)](2+) (bpy = 2,2'-bipyridine) was investigated in water and in the presence of added ligands such as bipyridine and chloride. Irradiation of the complex results in the covalent binding to 9-methyl- and 9-ethylguanine, as well as to single-stranded and double-stranded DNA. This photoinduced DNA binding is not observed for the control complex [Ru(bpy)(2)(en)](2+) (en = ethylenediamine) under similar irradiation conditions. The results presented here show that octahedral Ru(II) complexes with photolabile ligands may prove useful as photoactivated cisplatin analogs.  相似文献   

12.
It is known that the relaxed excited state of [Ru(bpy)3]2+ is best described as a metal to ligand charge transfer (MLCT) state having one formally reduced bipyridine and two neutral. Previous reports have suggested [Malone, R. et al. J. Chem. Phys. 1991, 95, 8970] that the electron "hops" from ligand to ligand in the MLCT state with a time constant of about 50 ps in acetonitrile. However, we have done transient absorption anisotropy measurements indicating that already after one picosecond the molecule has no memory of which bipyridine was initially photoselected, which suggests an ultrafast interligand randomization of the MLCT state.  相似文献   

13.
Theoretical studies on the complexes Ru(bpy)2L2+, Ru(phen)2L2+ (L=pytp,pztp) were carried out by using the density functional theory (DFT) method at B3LYP/LanL2DZ level. The relation between electronic structures and anti-cancer activities of complexes was investigated. The increasing of N in the main ligand can strengthen the interaction of complexes with DNA and anti cancer activities of complexes. The calculation results show that for complexes I-IV, their energies of LUMO orbital are in the order of εI>εII, εIII>εIV, the electron cloud components of LUMO come mainly from main ligands and the content distributing is in the order of I相似文献   

14.
15.
Chen M  Li H  Shao J  Huang Y  Xu Z 《Inorganic chemistry》2011,50(6):2043-2045
In this correspondence, we report on the first preparation of [Ru(bpy)(2)(dppz)](2+)-intercalated (bpy = 2,2'-bipyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine) DNA films on an indium-tin oxide surface via a solution-based self-standing strategy, carried out by the direct mixing of aqueous solutions of both anionic DNA and cationic metallointercalator at a molar ratio of 5:6. The luminescence of a [Ru(bpy)(2)(dppz)](2+)-intercalated DNA cast film is studied and found to show excellent tunable characteristics by Cu(2+) ions and ethylenediaminetetraacetic acid addition.  相似文献   

16.
Polypyridyl ligand 9a,13a‐dihydro‐4,5,9,14‐tetraaza‐benzo[b]triphenylene‐11‐yl)‐phenyl‐methanone (BDPPZ) and its complexes [Ru(bpy)2BDPPZ]2+, [Ru(dmb)2BDPPZ]2+ and [Ru(phen)2BDPPZ]2+ (where bpy = 2,2′‐bipyridine, dmb = 4,4′‐dimethyl‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) have been synthesized and characterized by elemental analysis, IR, UV–vis, 1H‐NMR, 13C‐NMR and mass spectra. The DNA‐binding properties of the complexes were investigated by absorption, emission, melting temperature and viscosity measurements. Experimental results indicate that the three complexes can intercalate into DNA base pairs. Photo activated cleavage of pBR‐322 DNA by the three complexes was also studied. Further, all three Ru(II) complexes synthesized were screened for their antimicrobial activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
18.
A new ligand, 2-phenyl(5-fluoro)imidazo[f]-1,10-phenanthroline (PIP(V)), and its coordination compounds, Ru(bpy)2PIP(V), were synthesized. The fluorescence spectrum of the interaction between Ru(bpy)2PIP(V) and DNA was studied, and a very strong fluorescence peak at a wavelength of 589 nm appeared. The optimum condition of analyzing DNA was decided. The method is simple, convenient and fast, and also has high sensitivity and good selectivity. It has been satisfactorily employed for determinations in synthesized samples.  相似文献   

19.
研究发现, [Ru(phen)2dppz]2+表现出非常强的自聚合倾向, 并显著影响DNA的键合性质, 有关方面的研究应引起科研工作者的足够重视.  相似文献   

20.
The cation cis-[Ru(bpy)(2)(5CNU)(2)](2+) (bpy = 2,2'-bipyridine; 5CNU = 5-cyanouracil) was synthesized and investigated for use as a potential light-activated dual-action therapeutic agent. The complex undergoes efficient photoinduced 5CNU ligand exchange for solvent water molecules, thus simultaneously releasing biologically active 5CNU and generating [Ru(bpy)(2)(H(2)O)(2)](2+). The latter binds covalently to ds-DNA, such that photolysis results in the generation of 3 equiv of potential therapeutic agents from a single molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号