首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Infrared reflectance and Fourier transform Raman spectroscopy have been used to study silica and silica/titania monoliths produced by the sol—gel route which had been subjected to a series of heat treatments. With increasing thermal treatment temperature, the gel—glass matrix is strengthed by bond shortening and a reduction in mean SiOSi bond angle and angular distribution for this feature. Results obtained at a range of temperatures were in good agreement to those obtained for vitreous silica. The incorporation of low levels (3% by weight) of titanium led to more disordered glasses which contain titanium in tetrahedral sites only. Evidence was obtained for the formation of SiOTi bonds, principally during the latter stages of densification at temperatures between 615 and 1000°C.  相似文献   

2.
Porous monolithic gels based on silica with pore size from 16 nm to 3–5 μm have been synthesized using sol–gel technology. Parameters of porous structure are determined by the components molar ratio in the reaction mixture. The reduction processes of silver ions by formamide in the synthesized porous gel were studied. It has been shown that at the initial stage of the reaction, silver particles with size up to 10 nm are formed in the absence of any stabilizers. The composites Ag/SiO2 were synthesized by means of the threefold impregnation of porous monoliths using the solution of silver nitrate in the mixture of methanol and formamide. Their catalytic activity in the CO oxidation was studied. It was discovered that after activation in oxygen and hydrogen the samples display a low temperature activity, which depends on the number of Si–O-nonbridging oxygen groups on the surface of silica porous monoliths.  相似文献   

3.
Crystalline silica in cristobalite phase was successfully prepared at a relatively low temperature of 800 °C by calcinating polyimide/silica hybrid films under ambient air. X-ray photoelectron spectroscopy measurements show that the product is silica after calcination. It is found that the crystallinity is dependent on the removing rate and the strength of the interaction between polyimide and silica. The presence of polyimide plays an important role in the growth of silica. Calcination to remove polyimide with rapid heating results in lower crystallinity compared with calcination with slow heating. For samples with the same content of silica, the crystallinity changes with the strength of the interaction between polyimide and silica molecules.  相似文献   

4.
In this work the research results on the sol–gel synthesis and structure of silica nanocomposites, containing carrageenan and their application as carriers for cell immobilization were described. The samples were prepared at room temperature by replacing different quantity of the inorganic precursor with κ-carrageenan. For studying the structure of the synthesized hybrids the following methods were used: FT-IR, XRD, BET-Analysis, SEM, AFM and Roughness Analysis. The influence of the type of silicon precursors, nature and quantity of organic component on the structure, surface area, design and size of nanostructures was established. The possibility of application of the synthesized biocatalysts in an enzyme degradation process of the toxic, carcinogenic and mutagenic substances benzonitrile, fumaronitrile, o-, m-, and p-tolunitriles was investigated at batch experiments. A two-step biodegradation process in a column bioreactor of fumaronitrile was followed. After operation of the system for 8 h at a flow rate 45 mL h?1 and at 60 °C, the overall conversion was 89%, showing a good stability of the developed process.  相似文献   

5.
Journal of Sol-Gel Science and Technology - The paper presents results on sol–gel preparation and characterization of multilayered coatings, Bragg mirrors, on silica slides, silica fibers,...  相似文献   

6.
Possible variants of the rheological behavior of silica model dispersions have been analyzed. Different types of interaction between the particles and a dispersion medium make it possible to obtain different systems from low-viscosity sols to gels. Proton-donor (water) and aprotic (dimethyl sulfoxide) media have been used for comparison. Dispersions in the aprotic medium behave as non-Newtonian viscous fluids exhibiting shear thinning or shear thickening depending on deformation rate. Aqueous dispersions are viscoelastic and viscoplastic objects that exhibit the shear thickening at stresses higher than the yield stress. The introduction of small amounts of poly(ethylene oxide) into the organic dispersion medium initiates gelation. An increase in the polymer content in the dispersion medium above the concentration corresponding to the formation of a macromolecular network promotes an increase in stiffness and strength of the gels. The rheological behavior of gels is influenced by the polymer molecular mass and its affinity for a solvent.  相似文献   

7.
This paper describes a method for fabrication of silica-coated Co–Pt alloy nanoparticles in a liquid phase process. The Co–Pt nanoparticles were prepared from CoCl2 (4.2 × 10−5 M), H2PtCl6 (1.8 × 10−5 M), citric acid (4 × 10−4 M) and NaBH4 (1.2 × 10−2 M) with a Co:Pt mole ratio of 7:3. The silica coating was performed in water/ethanol solution with a silane coupling agent, 3-aminopropyltrimethoxysilane (8 × 10−5 M), and a silica source, tetraethoxyorthosilicate (7.2 × 10−4 M) in the presence of the Co–Pt nanoparticles. Observations with a transmittance electron microscope and a scanning transmission electron microscope revealed that the Co-rich and Pt-rich nanoparticles were coated with silica. According to X-ray diffraction measurements, core particles were crystallized to metallic Co crystallites and fcc Co–Pt alloy crystallites with annealing in air at 300–500 °C. Magnetic properties of the silica-coated particles were strongly dependent on annealing temperature. Maximum values of 11.4 emu/g-sample for saturation magnetization and 365 Oe for coercive field were obtained for the particles annealed at 300 and 500 °C, respectively. Annealing at a temperature as high as 700 °C destroyed the coating structures because of crystallization of silica shell, resulting in reduction in saturation magnetization and coercive field.  相似文献   

8.
Stöber silica nanoparticles with a diameter of approximately 800 nm are covalently modified by redox-active ferrocene or (diamine)(diphosphine) ruthenium(II) units attached to a spacer. The particles are characterized by NMR spectroscopic and chemical techniques. Two variants of modification by condensation are compared. Besides an estimation of the size and the particle porosity, the agglomeration behavior in solvents of different polarity is investigated. The adsorption of the particles to an electrode surface is followed.  相似文献   

9.
Poly-β-pinene (pBp) was obtained on silica surface by γ radiation-induced polymerization of β(−)pinene in presence of silica gel with a specific surface area of 300 m2/g. Different radiation doses were employed in the range 50–332 kGy. The pBp–silica hybrid samples obtained have been characterized by FT-IR spectroscopy and the amount of pBp on silica surface has been determined both by gravimetric and TGA measurements. The fraction of pBp chemically grafted on silica surface has been determined by the extraction of the pBp–silica hybrid with boiling toluene and was found to be 10–20% of the total pBp formed on silica surface. The optical activity of pBp extracted from the hybrid was studied by polarimetric measurements and found slightly lower than the typical specific optical rotation of pBp polymerized in bulk with radiation. The thermal stability of the pBp–silica hybrid materials was studied by thermogravimetric and differential thermal analysis. The results show lower thermal stability for the pBp–silica hybrid in comparison to pure pBp. Evidently, silica catalyzes the thermal decomposition of pBp at lower temperatures. Use of the pBp–silica hybrid as stationary phase for liquid chromatography for chiral separations has been proposed.  相似文献   

10.
A two-stage process has been developed to generate the silica-based macromonomer through surface-modification of silica with polymerizable vinyl groups. The silica surfaces were treated with excess 2,4-toluene diisocynate (TDI), after which the residual isocyanate groups were converted into polymerizable vinyl groups by reaction with hydroxypropylacrylate (HPA). Thus, polystyrene/silica nanocomposites were prepared by conventional radical copolymerization of styrene with silica macromonomer. The main effecting factors, such as ratios of styrene to the macromonomer, together with polymerization time on the copolymerization were studied in detail. FTIR, DSC and TGA were utilized to characterize the nanocomposites. Experimental results revealed that the silica nanoparticles act as cross-linking points in the polystytene/silica nanocomposites, and the glass transition temperatures of the nanocomposites are higher than that of the corresponding pure polystyrene. The glass transition temperatures of nanocomposites increased with the increasing of silica contents, which were further ascertained by DSC.  相似文献   

11.
2-(p-toluidino)-6-naphthalene sulfonate (TNS) is a probe that fluoresces strongly when bound to certain proteins and polymers, but weakly in aqueous solutions. The reversible association of TNS is used to monitor the binding of anionic nanosized silica particles (NSP) to cationic potato amylopectin starch (CApS) through the decreasing fluorescence emission as TNS is competitively released by the particle binding. Steady-state fluorescence measurements at different mixing ratios of CApS and NSP provide data on the equilibrium binding. The isotherm derived is used to establish the fact that the most efficient flocculation between CApS and NSP occurs when the polymer coils are nearly saturated by NSP, but still have positively charged parts left. This supports a patch-flocculation mechanism. Stopped-flow experiments show that NSP binding to CApS occurs within a few milli seconds. This observation allows turbidity changes which occur on longer timescales to be ascribed to particle-decorated polymers undergoing changes in the conformation or aggregation. Received: 14 August 1998 Accepted in revised form: 4 December 1998  相似文献   

12.
This study focused on the preparation of a hydrocarbon dispersion of nanospherical silica using tetraethoxysilane homopolymerization by a sol–gel process catalyzed by NH4OH in ethanol. The silica surface was rendered hydrophobic by the introduction of trimethylchlorosilane or trimethylethoxysilane as a terminator. Organophilic particles with diameters in the range 10–130 nm were obtained under controlled conditions. Nevertheless, the organophilic fraction dispersed in hexane was not greater than 62%. The homopolymerization reaction time was directly related to the particle size and, in some cases, its insolubility. High terminator concentration and low termination temperature favored the increase in the number of organophilic particles. The chlorine-containing terminator was more efficient in promoting the production of hydrocarbon hydrophobic nanospheres. Received: 21 February 2000/Accepted: 21 June 2000  相似文献   

13.
Measuring and modeling the surface charge of clays, and more especially smectites, has become an important issue in the use of bentonites as a waste confinement material aimed at retarding migration of water and solutes. Therefore, many studies of the acid-base properties of montmorillonite have appeared recently in the literature, following older studies principally devoted to cation exchange. It is striking that beyond the consensus about the complex nature of the surface charge of clays, there are many discrepancies, especially concerning the dissociable charge, that prevents intercomparison among the published data. However, a general trend is observed regarding the absence of common intersection point on raw titration curves at different ionic strengths. Analysis of the literature shows that these discrepancies originate from the experimental procedures for the preparation of the clays and for the quantification of their surface charge. The present work is an attempt to understand how these procedures can impact the final results. Three critical operations can be identified as having significant effects on the surface properties of the studied clays. The first one is the preparation of purified clay from the raw material: the use of acid or chelation treatments, and the repeated washings in deionized water result in partial dissolution of the clays. Then storage of the purified clay in dry or wet conditions strongly influences the equilibria in the subsequent experiments respectively by precipitation or enhanced dissolution. The third critical operation is the quantification of the surface charge by potentiometric titration, which requires the use of strong acids and bases. As a consequence, besides dissociation of surface sites, many secondary titrant consuming reactions were described in the literature, such as cation exchange, dissolution, hydrolysis, or precipitation. The cumulated effects make it difficult to derive proper dissociation constants, and to build adequate models. The inadequation of the classical surface complexation models to describe the acid-base behavior of clays is illustrated by the electrokinetic behavior of smectites, which is independent from the pH and the ionic strength. Therefore, there is still a need on one hand for accurate data recorded in controlled conditions, and on the other hand for new models taking into account the complex nature of the charge of clays.  相似文献   

14.
《Tetrahedron letters》1986,27(15):1723-1726
α-Metallo benzylselenides and α-metallo selenoacetals derived from aromatic aldehydes have been conveniently prepared by metallation of the corresponding carbon acids. KDA in THF proved among the various basic systems tested, the most efficient.α-Metallo benzylselenides and α-metallo selenoacetals derived from aromatic aldehydes have been conveniently prepared by metallation with KDA of the corresponding carbon acids. These reactions have been used for the synthesis of arylalkanes, including those bearing a trialkylated benzylic carbon, from aromatic aldehydes.  相似文献   

15.
《Solid State Sciences》2012,14(10):1550-1556
The thermal decomposition approach, reverse micro-emulsion system and surface modification technique had been successfully used to synthesis single magnetic core Fe3O4@Organic Layer@SiO2–NH2 complex microspheres. The magnetization of the magnetic microspheres core could be easily tuned between 28 and 56 emu/g by adjusting the amount of 2-mercaptobarbituric acid. It was found that the Organic Layer to some extent had a protective effect on avoiding Fe3O4 being oxidized into Fe2O3. Each Fe3O4@Organic Layer microsphere could be coated uniformly by about 30 nm of silica shell. The average diameter of the Fe3O4@Organic Layer@SiO2 composites was about 538 nm. The saturation magnetization of the Fe3O4@Organic Layer@SiO2 complex microspheres was 12.5% less than magnetic microspheres cores. The Fe3O4@Organic Layer@SiO2–NH2 composites possessed a huge application potentiality in specificity enriching and separating biological samples.  相似文献   

16.
Epoxy–silica hybrids with interfacial bonding using aminophenyl-trimethoxysilane (APTMOS) have been prepared by the sol–gel process. In a sequential polymerization procedure the amine groups present on the APTMOS were used to partially cure diglycidyl ether of bisphenol-A (DGEBA) whereas the methoxy groups created silica-network simultaneously, through the sol–gel process. Complete curing and cross-linking were carried out later using curing agent jeffamine D-400 at higher temperature. The nature of silica network structure chemically bonded with the epoxy chains was studied by Fourier transformed infrared spectroscopy and the morphology of the hybrid through scattering electron and atomic force microscopies. The visco-elastic properties of the resulting hybrids were measured through dynamical thermal mechanical analysis. The effect of inter-phase bonding of the resulting hybrids and their thermal mechanical properties are compared with the similar DGEBA epoxy matrix where un-bonded silica network was produced from tetraethoxysilane. The properties of the hybrids using APTMOS show considerable improvement in thermal mechanical properties and the coefficient of thermal expansion is reduced in contrast to the un-compatiblized system.  相似文献   

17.
Adsorption-desorption isotherms of toluene, methylcyclohexane and neopentane were determined on a silica MCM-41 material of pore diameter ∼3.4 nm over the temperature range 258 K to 308 K (278 K for neopentane). The isosteric enthalpies of adsorption were determined from the isotherms at the various temperatures. It was found that the isotherms of toluene and methylcyclohexane have a similar variation with the temperature, exhibiting hysteresis at 268 K and at lower temperature, while the adsorption of neopentane is reversible at all temperatures. The three organic adsorptives interact differently with the silica surface and the isosteric enthalpies of adsorption indicated that methylcyclohexane has the weakest interaction and toluene the strongest. A slight increase in the adsorption enthalpy at the beginning of the capillary condensation step is observed with methylcyclohexane and neopentane but not with toluene.  相似文献   

18.
Cyclopropyl type radicals were identified on a surface of activated silica by ESR. The possibility of their preparation by two methods,i.e., by photocyclization of substituted allyl radicals and by interaction of cyclopropane molecules with particular surface defects, was demonstrated. The effects of -substituents on radiospectroscopic characteristics and thermal stabilities of the radicals were studied. Rate constants and activation energies of decomposition of substituted cyclopropyl radicals were estimated. The experimental data obtained were compared with the results of quantum-chemical calculations of model systems. The mechanism of photocyclization of allyl radicals was discussed. The transition states of decomposition of cyclopropyl and -fluorine-substituted cyclopropyl radicals were calculated. Electronegative substitution was found to result in a considerable decrease in the activation energy of the cyclopropane ring opening.The authors are grateful to E. G. Baskir for calling their attention to this publication.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2409–2421, December, 1995.The work was carried out with financial support of the Russian Foundation for Basic Research (Project code 94-03-09137) and the International Science Foundation (Grant No. MK9000).  相似文献   

19.
Zhen-Guo Zhao 《中国化学》1992,10(4):325-330
The adsorption isotherms of phenylalanine from aqueous solution on active carbon andsilica gel at varying pH,and the influence of inorganic salt upon the ad rption have been studied(at 25℃).The adsorption amount of phcnylalanine on the silica gel is very low due to the strong ad-sorption of water by silica gel.The results on the active carbon show:(1)The adsorption is found to bepH-dependent,within pH 4.1—5.1 it increases with pH,within pH 5.1—11.8 it decreases with pH,atpH 5.1 the adsorption reaches its maximum;(2)The phenylalanine is adsorbed mainly in the formof zwitterion;(3)A certain amount of cations and anions of phenylalanine are also adsorbed with vander Waals interaction;(4)After adding NaCl,the adsorption of phenylalanine increases markedly.  相似文献   

20.
Titania (TiO2) and titania–silica (TiSi) aerogels are suitable for photocatalytic oxidation of volatile organic compounds for pollution mitigation; however, methods for fabricating these aerogels can be complex. In this work we describe the use of a rapid supercritical extraction (RSCE) technique to prepare TiO2 and TiSi aerogels in as little as 8 h. The RSCE technique uses a metal mold and a four-step hydraulic hot press procedure to bring the solvents in the sol–gel pores to a supercritical state and control the supercritical fluid release process. Resulting TiO2 aerogels were powdery with BET surface areas of 130–180 m2/g, pore volumes ~0.5 cm3/g and skeletal densities of 3.6 g/mL. Monolithic TiSi aerogels were made using two different methods. An impregnation process, in which titania precursor was added to a silica sol–gel, took 4–8 days to complete with a 7-h RSCE and resulted in translucent aerogels with high surface area (560–650 m2/g) and pore volume (2.0–2.6 cm3/g), bulk densities ranging from 0.1 to 0.4 g/mL and skeletal densities of 2.3 g/mL. A co-precursor method for preparing TiSi aerogels took 8 h to complete. The precursor chemical mixture was poured directly into the mold and processed in a 7-h RSCE process. The resulting aerogels were opaque, with high surface areas (510–580 m2/g), low bulk density (0.03 g/mL), skeletal densities of 2 g/mL and pore volumes of 2.6–3.5 cm3/g. Preliminary solar simulator studies show that TiO2 and TiSi aerogels are capable of photocatalytic degradation of methylene blue in aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号