首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The dynamics of the excited states of 1-(p-nitrophenyl)-2-(hydroxymethyl)pyrrolidine (p-NPP) has been investigated using the subpicosecond transient absorption spectroscopic technique in different kinds of solvents. Following photoexcitation using 400 nm light, conformational relaxation via twisting of the nitro group, internal conversion (IC) and the intersystem crossing (ISC) processes have been established to be the three major relaxation pathways responsible for the ultrafast deactivation of the excited singlet (S(1)) state. Although the nitro-twisting process has been observed in all kinds of solvents, the relative probability of the occurrence of the other two processes has been found to be extremely sensitive to solvent polarity, because of alteration of the relative energies of the S(1) and the triplet (T(n)) states. In the solvents of lower polarity, the ISC is predominant over the IC process, because of near isoenergeticity of the S(1)(ππ*) and T(3)(nπ*) states. On the other hand, in the solvents of very large polarity, the energy of the S(1)(ππ*) state becomes lower than those of both the T(3)(nπ*) and T(2)(nπ*/ππ*) states, but those of the T(1)(ππ*) state and the IC process to the ground electronic (S(0)) state are predominant over the ISC, and hence the triplet yield is nearly negligible. However, in the solvents of medium polarity, the S(1) and T(2) states become isoenergetic and the deactivation of the S(1) state is directed to both the IC and ISC channels. In the solvents of low and medium polarity, following the ISC process, the excited states undergo IC, vibrational relaxation, and solvation in the triplet manifold. On the other hand, following the IC process in the Franck-Condon region of the S(0) state, the vibrationally hot molecules with the twisted nitro group subsequently undergo the reverse nitro-twisting process via dissipation of the excess vibrational energy to the solvent or vibrational cooling.  相似文献   

2.
Ground state absorption, first excited-singlet state, and properties of reactive intermediates of mononitropyrene isomers encountered in the atmospheric aerosol have been studied under different conditions that could mimic the environment. The nitro group can present different orientations relative to the pyrene ring depending on its geometric location and could induce differences in the photochemistry of the isomers. The 2-NO(2)Py isomer has the largest red shift and lowest oscillator strength in the UV-visible band associated with the nitro group. The isomers show very low fluorescence yields (10(-3)-10(-4)). Only 1-NO(2)Py and 4-NO(2)Py have phosphorescence emission (Φ(p) ≈ 10(-4)), indicating that the lowest triplet state decays mainly through effective radiationless channels. Laser photolysis produces a low-lying triplet state (τ(T) = 10(-5)-10(-6) s), a long-lived pyrenoxy radical, and a PyNO(2)H radical in solvents in which the triplet can abstract a hydrogen atom. Similar triplet yields were calculated (0.1-0.6) for the isomers, while significant differences in the relative yield of the long-lived species were determined. Differences in the quenching rate constants of the triplet by water and phenols suggest a strong hydrogen-bond interaction with the nitro group in the C-2 position, which provides for radiationless deactivation routes.  相似文献   

3.
Phenalenone (PN) is a very efficient singlet oxygen sensitiser in a wide range of solvents. This work uses ab initio quantum chemical calculations (CASSCF/CASPT2 protocol) to study the mechanism for populating the triplet state of PN responsible for this reaction, the (3)(π-π*) state. To describe in detail this reaction path, the singlet and triplet low-lying excited states of PN have been studied, the critical points of the potential energy surfaces corresponding to these states located and the vertical and adiabatic energies calculated. Our results show that, after the initial population of the S(2) excited state of (π-π*) character, the system undergoes an internal conversion to the (1)(n-π*) state. After populating the dark S(1) state, the system relaxes to the (1)(n-π*) minimum, but rapidly populates the triplet manifold through a very efficient intersystem crossing to the (3)(π-π*) state. Although the population of the minimum of this triplet state is strongly favoured, a conical intersection with the (3)(n-π*) surface opens an internal conversion channel to this state, a path accessible only at high temperatures. Radiationless deactivation processes are ruled out on the basis of the high-energy barriers found for the crossings between the excited states and the ground state. Our computational results satisfactorily explain the experimental findings and are in very good agreement with the experimental data available. In the case of the frequency of fluorescence, this is the first time that these data have been theoretically predicted in good agreement with the experimental results.  相似文献   

4.
1-Nitropyrene (1NPy) is the most abundant nitropolycyclic aromatic contaminant encountered in diesel exhausts. Understanding its photochemistry is important because of its carcinogenic and mutagenic properties, and potential phototransformations into biologically active products. We have studied the photophysics and photochemistry of 1NPy in solvents that could mimic the microenvironments in which it can be found in the atmospheric aerosol, using nanosecond laser flash photolysis, and conventional absorption and fluorescence techniques. Significant interactions between 1NPy and solvent molecules are demonstrated from the changes in the magnitude of the molar absorption coefficient, bandwidth at half-peak, oscillator strengths, absorption maxima, Stokes shifts, and fluorescence yield. The latter are very low (10 (-4)), increasing slightly with solvent polarity. Low temperature phosphorescence and room temperature transient absorption spectra demonstrate the presence of a low energy (3)(pi,pi*) triplet state, which decays with rate constants on the order of 10 (4)-10 (5) s (-1). This state is effectively quenched by known triplet quenchers at diffusion control rates. Intersystem crossing yields of 0.40-0.60 were determined. A long-lived absorption, which grows within the laser pulse, and simultaneously with the triplet state, presents a maximum absorption in the wavelength region of 420-440 nm. Its initial yield and lifetime depend on the solvent polarity. This species is assigned to the pyrenoxy radical that decays following a pseudo-first-order process by abstracting a hydrogen atom from the solvent to form one the major photoproducts, 1-hydroxypyrene. The (3)(pi,pi*) state reacts readily ( k approximately 10 (7)-10 (9) M (-1) s (-1)) with substances with hydrogen donor abilities encountered in the aerosol, forming a protonated radical that presents an absorption band with maximum at 420 nm.  相似文献   

5.
Quantum-chemical calculations of ground and excited states for membrane fluorescent probe 4-dimethylaminochalcone (DMAC) in vacuum were performed. Optimized geometries and dipole moments for lowest-lying singlet and triplet states were obtained. The nature of these electronic transitions and the relaxation path in the excited states were determined; changes in geometry and charge distribution were assessed. It was shown that in vacuum the lowest existed level is of (n, π*) nature, and the closest to it is the level of (π, π*) nature; the energy gap between them is narrow. This led to an effective (1)(π, π*) →(1)(n, π*) relaxation. After photoexcitation the molecule undergoes significant transformations, including changes in bond orders, pyramidalization angle of the dimethylamino group, and planarity of the molecule. Its dipole moment rises from 5.5 Debye in the ground state to 17.1 Debye in the (1)(π, π*) state, and then falls to 2 Debye in the (1)(n, π*) state. The excited (1)(n, π*) state is a short living state; it has a high probability of intersystem crossing into the (3)(π, π*) triplet state. This relaxation path explains the low quantum yield of DMAC fluorescence in non-polar media. It is possible that (3)(π, π*) is responsible for observed DMAC phosphorescence.  相似文献   

6.
The well-known benzophenone intersystem crossing from S(1)(n,pi*) to T(1)(n,pi*) states, for which direct transition is forbidden by El-Sayed rules, is reinvestigated by subpicosecond time-resolved absorption spectroscopy and effective data analysis for various excitation wavelengths and solvents. Multivariate curve resolution alternating least-squares analysis is used to perform bilinear decomposition of the time-resolved spectra into pure spectra of overlapping transient species and their associated time-dependent concentrations. The results suggest the implication of an intermediate (IS) in the relaxation process of the S(1) state. Therefore, a two step kinetic model, S(1) --> IS --> T(1), is successfully implemented as an additional constraint in the soft-modeling algorithm. Although this intermediate, which has a spectrum similar to the one of T(1)(n,pi*) state, could be artificially induced by vibrational relaxation, it is tentatively assigned to a hot T(1)(n,pi*) triplet state. Two characteristic times are reported for the transition S(1) --> IS and IS --> T(1), approximately 6.5 ps and approximately 10 ps respectively, without any influence of the solvent. Moreover, an excitation wavelength effect is discovered suggesting the participation of unrelaxed singlet states in the overall process. To go further discussing the spectroscopic relevancy of IS and to rationalize the expected involvement of the T(2)(pi,pi*) state, we also investigate 4-methoxybenzophenone. For this neighboring molecule, triplet energy level is tunable through solvent polarity and a clear correlation is established between the intermediate resolved by multivariate data analysis and the presence of a T(2)(pi,pi*) above the T(1)(n,pi*) triplet. It is therefore proposed that the benzophenone intermediate species is a T(1)(n,pi*) high vibrational level in interaction with T(2)(pi,pi*) state.  相似文献   

7.
Abstract— Pyrazinopsoralen (PzPs), a new monofunctional psoralen, has a UV absorption spectrum similar to other psoralens except that it absorbs more strongly in the long-UVA than 8-methoxypsoralen. The solvent effects on the UV absorption and fluorescence emission spectra indicate that the lowest excited singlet state is the π,π* state like other psoralen derivatives. It shows a much lower fluorescence quantum yield (0.0008 in ethanol at room temperature) than the other psoralens as expected by the increased proximity effect (vibronic perturbation) due to close 1(n,π*) to 1(π,π*) states. The fluorescence lifetime was 1.05 ns in methylcyclohexane with a single exponential decay, while more than two components were observed in other solvents with the short-lived component being the major (>95%). The triplet state of PzPs could not be detected by phosphorescence, laser flash excitation (T-T absorption) and singlet oxygen formation probably due to very low φisc, or short lifetime of the triplet state (τT) caused by the fast T1→ S0 intersystem crossing.  相似文献   

8.
<正> 具有光致变色现象的席夫碱在过去几十年里一直为人们所感兴趣。一般认为,水杨醛上的邻羟基是这类席夫碱发生光致变色的必要条件。光致变色的过程就是邻羟基的质子转移到亚氨基的氮原子上,随后发生分子内的几何异构,但对此机理仍存在争执。本文主要报道一些席夫碱的电子吸收光谱与分子结构的关系,以及溶剂对电子吸收光谱的影响。  相似文献   

9.
The Mn-nitrosyl complexes [Mn(PaPy(3))(NO)](ClO(4)) (1; PaPy(3)(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamide) and [Mn(PaPy(2)Q)(NO)](ClO(4)) (2, PaPy(2)Q(-) = N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-quinoline-2-carboxamide) show a remarkable photolability of the NO ligand upon irradiation of the complexes with UV-vis-NIR light [Eroy-Reveles, A. A.; Leung, Y.; Beavers, C. M.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2008, 130, 4447]. Here we report detailed spectroscopic and theoretical studies on complexes 1 and 2 that provide key insight into the mechanism of NO photolabilization in these compounds. IR- and FT-Raman spectroscopy show N-O and Mn-NO stretching frequencies in the 1720-1750 and 630-650 cm(-1) range, respectively, for these Mn-nitrosyls. The latter value for ν(Mn-NO) is one of the highest transition-metal-NO stretching frequencies reported to this date, indicating that the Mn-NO bond is very strong in these complexes. The electronic structure of 1 and 2 is best described as Mn(I)-NO(+), where the Mn(I) center is in the diamagnetic low-spin state and the NO(+) ligand forms two very strong π backbonds with the d(xz) and d(yz) orbitals of the metal. This explains the very strong Mn-NO bonds observed in these complexes, which even supersede the strengths of the Fe- and Ru-NO bonds in analogous (isoelectronic) Fe/Ru(II)-NO(+) complexes. Using time-dependent density functional theory (TD-DFT) calculations, we were able to assign the electronic spectra of 1 and 2, and to gain key insight into the mechanism of NO photorelease in these complexes. Upon irradiation in the UV region, NO is released because of the direct excitation of d(π)_π* → π*_d(π) charge transfer (CT) states (direct mechanism), which is similar to analogous NO adducts of Ru(III) and Fe(III) complexes. These are transitions from the Mn-NO bonding (d(π)_π*) into the Mn-NO antibonding (π*_d(π)) orbitals within the Mn-NO π backbond. Since these transitions lead to the population of Mn-NO antibonding orbitals, they promote the photorelease of NO. In the case of 1 and 2, further transitions with distinct d(π)_π* → π*_d(π) CT character are observed in the 450-500 nm spectral range, again promoting photorelease of NO. This is confirmed by resonance Raman spectroscopy, showing strong resonance enhancement of the Mn-NO stretch at 450-500 nm excitation. The extraordinary photolability of the Mn-nitrosyls upon irradiation in the vis-NIR region is due to the presence of low-lying d(xy) → π*_d(π) singlet and triplet excited states. These have zero oscillator strengths, but can be populated by initial excitation into d(xy) → L(Py/Q_π*) CT transitions between Mn and the coligand, followed by interconversion into the d(xy) → π*_d(π) singlet excited states. These show strong spin-orbit coupling with the analogous d(xy) → π*_d(π) triplet excited states, which promotes intersystem crossing. TD-DFT shows that the d(xy) → π*_d(π) triplet excited states are indeed found at very low energy. These states are strongly Mn-NO antibonding in nature, and hence, promote dissociation of the NO ligand (indirect mechanism). The Mn-nitrosyls therefore show the long sought-after potential for easy tunability of the NO photorelease properties by simple changes in the coligand.  相似文献   

10.
The goal of this work is to produce high yields of long-lived AQ(*-)/dA(*+) charge transfer (CT) excited states (or photoproducts). This goal fits within a larger context of trying generally to produce high yields of long-lived CT excited states within DNA nucleoside conjugates that can be incorporated into DNA duplexes. Depending upon the energetics of the anthraquinonyl (AQ) (3)(pi,pi) state as well as the reduction potentials of the subunits in particular anthraquinonyl-adenine conjugates, CT quenching of the AQ (3)(pi,pi*) state may or may not occur in polar organic solvents. In MeOH, bis(3',5'-O-acetyl)-N(6)-(anthraquinone-2-carbonyl)-2'-deoxyadenosine (AQCOdA) behaves as intended and forms a (3)(AQ(*-)/dA(*+)) CT state with a lifetime of 3 ns. However, in nonpolar THF the AQ(*-)/dA(*+) CT states of AQCOdA are too high in energy to be formed, and in DMSO a (1)(AQ(*-)/dA(*+)) CT state is formed but lives only 6 ps. Although the lowest energy excited state for AQCOdA in MeOH is a (3)(AQ(*-)/dA(*+)) CT state, for N(6)-(anthraquinone-2-methylenyl)-2'-deoxyadenosine (AQMedA) in the same solvent it is a (3)(pi,pi*) state. Changing the linking carbonyl in AQCOdA to methylene in AQMedA makes the anthraquinonyl subunit harder to reduce by 166 mV. This raises the energy of the (3)(AQ(*-)/dA(*+)) CT state above that of the (3)(pi,pi*) in AQMedA. The conclusion is that anthraquinonyl-dA conjugates will not have lowest energy AQ(*-)/dA(*+) CT states in polar organic solvents unless the anthraquinonyl subunit is also substituted with an electron-withdrawing group that raises the AQ-subunit's reduction potential above that of AQ. A key finding in this work is that the lifetime of the (3)(AQ(*-)/dA(*+)) CT excited state (ca. 3 ns) is ca. 500-times longer than that of the corresponding (1)(AQ(*-)/dA(*+)) CT excited state (ca. 6 ps).'  相似文献   

11.
A series of mononuclear iron(II) and zinc(II) complexes of the new chiral Py(ProMe)2 ligand (Py(ProMe)2 = 2,6-bis[[(S)-2-(methyloxycarbonyl)-1-pyrrolidinyl]methyl]pyridine) have been prepared. The molecular geometry in the solid state (X-ray crystal structures) of the complexes [FeCl2(Py(ProMe)2)] (1), [ZnCl2(Py(ProMe)2)] (2), [Fe(OTf)2(Py(ProMe)2)] (3), [Fe(Py(ProMe)2)(OH2)2](OTf)2 (4), and [Zn(OTf)(Py(ProMe)2)](OTf) (5) are reported. They all show a meridional NN'N coordination of the Py(ProMe)2 ligand. The bis-chloride derivatives 1 and 2 represent neutral isostructural five-coordinated complexes with a distorted geometry around the metal center. Unusual seven-coordinate iron(II) complexes 3 and 4 having a pentagonal bipyramidal geometry were obtained using weakly coordinating triflate anions. The reaction of Zn(OTf)2 with the Py(ProMe)2 ligand afforded complex 5 with a distorted octahedral geometry around the zinc center. All complexes were formed as single diastereoisomers. In the case of complexes 3-5, the oxygen atoms of both carbonyl groups of the ligand are also coordinated to the metal. The stereochemistry of the coordinated tertiary amine donors in complexes 3-5 is of opposite configuration as in complexes 1 and 2 as a result of the planar penta-coordination of the ligand Py(ProMe)2. Complexes 1, 2, and 5 have an overall -configuration at their metal center, while the Fe(II) ion in complexes 3 and 4 has the opposite delta-configuration (crystal structures and CD measurements). The magnetic moments of iron complexes 1, 3, and 4 correspond to that of high-spin d6 Fe(II) complexes. The solution structures of complexes 1-5 were characterized by means of UV-vis, IR, conductivity, and CD measurements and their electrochemical behavior. These studies showed that the coordination environment of 1 and 2 observed in the solid state is maintained in solution. In coordinating solvents, the triflate anion (3, 5) or water (4) co-ligands of complexes 3-5 are replaced by solvent molecules with retention of the original pentagonal bipyramidal and octahedral geometry, respectively.  相似文献   

12.
We report the analysis of the S1<--S0 rotational band contours of jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. Unlike thymine, which exhibits a structureless spectrum, the vibronic spectrum of 5M2HP is well structured, allowing us to determine the rotational constants and the methyl group torsional barriers in the S0 and S1 states. The 0(0)(0), 6a(0)(1), 6b(0)(1), and 14(0)(1) band contours were measured at 900 MHz (0.03 cm(-1)) resolution using mass-specific two-color resonant two-photon ionization (2C-R2PI) spectroscopy. All four bands are polarized perpendicular to the pyrimidine plane (>90% c type), identifying the S1<--S0 excitation of 5M2HP as a 1nπ* transition. All contours exhibit two methyl rotor subbands that arise from the lowest 5-methyl torsional states 0A" and 1E". The S0 and S1 state torsional barriers were extracted from fits to the torsional subbands. The 3-fold barriers are V3" = 13 cm(-1) and V3' = 51 cm(-1); the 6-fold barrier contributions V6" and V6' are in the range of 2-3 cm(-1) and are positive in both states. The changes of A, B, and C rotational constants upon S1 <--S0 excitation were extracted from the contours and reflect an “anti-quinoidal” distortion. The 0(0)(0) contour can only be simulated if a 3 GHz Lorentzian line shape is included, which implies that the S1(1nπ*) lifetime is ~55 ps. For the 6a(0)(1) and 6b(0)(1) bands, the Lorentzian component increases to 5.5 GHz, reflecting a lifetime decrease to ~30 ps. The short lifetimes are consistent with the absence of fluorescence from the 1nπ* state. Combining these measurements with the previous observation of efficient intersystem crossing (ISC) from the S1 state to a long-lived T1 (3nπ*) state that lies ~2200 cm(-1) below [S. Lobsiger, S. et al. Phys. Chem. Chem. Phys. 2010, 12, 5032] implies that the broadening arises from fast intersystem crossing with k(ISC) ≈ 2 × 10(10) s(-1). In comparison to 5-methylpyrimidine, the ISC rate is enhanced by at least 10 000 by the additional hydroxy group in position 2.  相似文献   

13.
A new pyrazinoporphyrazine macrocycle carrying externally appended pyridine rings, tetrakis-2,3-[5,6-di(2-pyridyl)pyrazino]porphyrazine (hydrated), [Py(8)TPyzPzH(2)].2H(2)O, was prepared in high yield by direct cyclotetramerization of the precursor, 2,3-dicyano-5,6-di(2-pyridyl)-1,4-pyrazine, [(CN)(2)Py(2)Pyz], in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). The single-crystal X-ray structure of [(CN)(2)Py(2)Pyz] shows a noncoplanar positioning of the pyrazine and pyridine rings in the two slightly different independent molecular units present in the crystal. UV-vis spectra of [Py(8)TPyzPzH(2)] were measured in two nondonor solvents (CHCl(3), CH(2)Cl(2)), a slightly basic solvent (pyridine), and an acidic solvent (CH(3)COOH). In all cases, the spectral changes are consistent with the occurrence of molecular aggregation and colloidal dispersions which break up with time to give clear solutions containing exclusively the monomeric form of the macrocycle, either neutral [Py(8)TPyzPzH(2)] (in CHCl(3), CH(2)Cl(2), and CH(3)COOH) or dianionic [Py(8)TPyzPz](2)(-) (in pyridine). A spectrally monitored titration of [Py(8)TPyzPzH(2)] in CH(2)Cl(2) with TBA(OH) shows the loss of two protons from the macrocyclic core and quantitative conversion of [Py(8)TPyzPzH(2)] to [Py(8)TPyzPz](2)(-). Cyclic voltammetry and thin-layer spectroelectrochemical measurements show that [Py(8)TPyzPzH(2)] is present in CH(2)Cl(2) while [Py(8)TPyzPz](2)(-) is present in pyridine, but both forms of the compound exhibit identical electrochemical behavior, consistent with a conversion of the dianion to the neutral porphyrazine in pyridine prior to electroreduction via four reversible one-electron transfer steps. No oxidations of the macrocycle are observed in either solvent containing 0.1 M tetrabuthylammonium perchlorate (TBAP). A comparison of the electrochemical behavior for [Py(8)TPyzPzH(2)] with what is reported for related phthalocyanine and porphyrazine analogues highlights the remarkable electron-accepting properties of the presently investigated free-base macrocycle.  相似文献   

14.
The dissociation energetics in the phenol(+)?Ar(2)(2π) cluster ion have been investigated using photoionization efficiency and mass analyzed threshold ionization spectroscopy. The appearance energies for the loss of one and two Ar atoms are determined as ~210 and ~1115?cm(-1), respectively. The difference between the appearance energy for the first Ar ligand in phenol(+)?Ar(2)(2π) and the dissociation energy of the phenol(+)?Ar(π) dimer (535cm(-1)) is explained by the isomerization of one π-bound Ar ligand to the OH binding site (H-bond) upon ionization. The energy difference between phenol(+)?Ar(2)(2π) and phenol(+)?Ar(2)(H/π) could also be estimated to be around 325cm(-1), which corresponds roughly to the difference of the binding energy of a π-bound and H-bound Ar ligands. The binding energy of the H-bound Ar atom in phenol(+)?Ar(2)(H/π) is derived to be ~905cm(-1).  相似文献   

15.
The various dissociation thresholds of phenol(+)···Ar(3) complexes for the consecutive loss of all three Ar ligands were measured in a molecular beam using resonant photoionization efficiency and mass analyzed threshold ionization spectroscopy via excitation of the first excited singlet state (S(1)). The adiabatic ionization energy is derived as 68077 ± 15 cm(-1). The analysis of the dissociation thresholds demonstrate that all three Ar ligands in the neutral phenol···Ar(3) tetramer are attached to the aromatic ring via π-bonding, denoted phenol···Ar(3)(3π). The value of the dissociation threshold for the loss of one Ar ligand from phenol(+)···Ar(3)(3π), ~190 cm(-1), is significantly lower than the binding energy measured for the π-bonded Ar ligand in the phenol(+)···Ar(π) dimer, D(0) = 535 ± 3 cm(-1). This difference is rationalized by an ionization-induced π → H isomerization process occurring prior to dissociation, that is, one Ar atom in phenol(+)···Ar(3)(3π) moves to the OH binding site, leading to a structure with one H-bonded and 2 π-bonded ligands, denoted phenol(+)···Ar(3)(H/2π). The dissociation thresholds for the loss of two and three Ar atoms are also reported as 860 and 1730 cm(-1). From these values, the binding energy of the H-bound Ar atom can be estimated as 870 cm(-1).  相似文献   

16.
Photoinduced isomerization of a novel photochromic cation, [2PA-Mmim](+) (2-phenylazo-1,3-dimethylimidazolium cation), was studied by optical spectroscopic methods. The UV-Vis absorption spectra of the [2PA-Mmim](+) cation show two prominent bands starting around 410 and 520 nm, corresponding to the S(0)-S(2) (π, π*) and S(0)-S(1) (n, π*) transitions, respectively. The photoisomerization mechanism is studied by femtosecond time-resolved transient absorption experiments performed after S(0)-S(2) (π, π*) excitation in several solvents with different viscosity, including ionic liquids. The transient absorption signals at two representative wavelengths were fitted by bi-exponential functions, which yield four decay components. The photoisomerization mechanism is discussed in light of the relaxation schemes available for azobenzene. Only one of the components depends on the solvent viscosity and it changes from 1.2 ps (dichloromethane, 0.4 cP) to 5.6 ps ([Bmim][BF(4)], 93 cP). This component is assigned to a molecule at the S(1) state, which is responsible for the "rotational" isomerization. The weak dependence on the solvent viscosity of this component is explained in terms of local change in the viscosity as a result of local heating due to excess energy released at S(2)-S(1) internal conversion. The other three components of ~0.4, 1.0 and 10 ps are attributed to relaxation processes of the molecule at S(2), S(1) and S(0) states, respectively. The quantum yields for the forward E-Z photoisomerization are ~0.15 after S(2) excitation. The backward Z-E isomerization is slow with a lifetime of 1 hour and an activation energy of 91 kJ mol(-1) through an "inversion" mechanism.  相似文献   

17.
The photochemical behaviour of 2-Bromo-4,4-dimethyl-2-cyclohexenone (1) was studied in 2-propanol and cyclohexane. In both solvents (n-π*)-excitation followed by intersystem crossing leads to population of a low-lying triplet (T1) state, which can be quenched by 1,3-cyclohexadiene but does not undergo chemical transformation efficiently. (π-π*)-Excitation affords 4,4-dimethyl-2-cyclohexenone ( 2 ) as the only product. While in 2-propanol 2 is formed in 60% from the S2-state and in 40% from the T2-state, in cyclohexane reduction occurs exclusively from this upper triplet state. The T2-state can also be populated via energy transfer using acetone or benzene as sensitizer. The mechanistic dissimilarities for the reduction of excited 1 in either 2-propanol or cyclohexane are discussed.  相似文献   

18.
We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 ? in the singlet ground state and 2.568 ? in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.  相似文献   

19.
Visible, near-infrared (NIR) and IR spectra in the 15600-2500 cm(-1) region were measured for phenol and 2,6-difluorophenol, 2,6-dichlorophenol, and 2,6-dibromophenol in n-hexane, CCl(4), CHCl(3) and CH(2)Cl(2) to study hydrogen bonding effects and solvent dependences of wavenumbers and absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations. A band shift of the OH stretching vibrations from a gas state to a solution state (solvent shift) was plotted versus vibrational quantum number (v = 0, 1, 2 and 3), and it was found that there is a linear relation between the solvent shift and the vibrational quantum number. The slope of solvent shift decreases in the order of phenol, 2,6-difluorophenol and 2,6-dichlorophenol. For all of the solute molecules, the slope becomes larger with the increase in the dielectric constant of the solvents. The relative intensities of the OH stretching vibrations of phenol in CCl(4), CHCl(3), and CH(2)Cl(2) against the intensity of the corresponding OH vibration in n-hexane increase in the fundamental and the second overtone but decrease in the first and third overtones; the relative intensities show so-called "parity". The parity is more prominent for phenol that has an intermolecular hydrogen bonding than for 2,6-dihalogenated phenols that have an intramolecular hydrogen bond. These observations suggest that the intermolecular hydrogen bond between the OH group and the Cl atom plays a key role for the parity and that the intermolecular interaction between the solutes and the solvents (solvent effects) does not have a significant role in the parity.  相似文献   

20.
A series of low-spin, six-coordinate complexes [Fe(TBzTArP)L(2)]X (1) and [Fe(TBuTArP)L(2)]X (2) (X = Cl(-), BF(4)(-), or Bu(4)N(+)), where the axial ligands (L) are HIm, 1-MeIm, DMAP, 4-MeOPy, 4-MePy, Py, and CN(-), were prepared. The electronic structures of these complexes were examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopy as well as density functional theory (DFT) calculations. In spite of the fact that almost all of the bis(HIm), bis(1-MeIm), and bis(DMAP) complexes reported previously (including 2) adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, the corresponding complexes of 1 show the (d(xz), d(yz))(4)(d(xy))(1) ground state at ambient temperature. At lower temperature, the electronic ground state of the HIm, 1-MeIm, and DMAP complexes of 1 changes to the common (d(xy))(2)(d(xz), d(yz))(3) ground state. All of the other complexes of 1 and 2 carrying 4-MeOPy, 4-MePy, Py, and CN(-) maintain the (d(xz), d(yz))(4)(d(xy))(1) ground state in the NMR temperature range, i.e., 298-173 K. The EPR spectra taken at 4.2 K are fully consistent with the NMR results because the HIm and 1-MeIm complexes of 1 and 2 adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, as revealed by the rhombic-type spectra. The DMAP complex of 1 exists as a mixture of two electron-configurational isomers. All of the other complexes adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state, as revealed by the axial-type spectra. Among the complexes adopting the (d(xz), d(yz))(4)(d(xy))(1) ground state, the energy gap between the d(xy) and d(π) orbitals in 1 is always larger than that of the corresponding complex of 2. Thus, it is clear that the benzoannelation of the porphyrin ring stabilizes the (d(xz), d(yz))(4)(d(xy))(1) ground state. The DFT calculation of the bis(Py) complex of analogous iron(III) porphyrinate, [Fe(TPTBzP)(Py)(2)](+), suggests that the (d(xz), d(yz))(4)(d(xy))(1) state is more stable than the (d(xy))(2)(d(xz), d(yz))(3) state in both ruffled and saddled conformations. The lowest-energy states in the two conformers are so close in energy that their ordering is reversed depending on the calculation methods applied. On the basis of the spectroscopic and theoretical results, we concluded that 1, having 4-MeOPy, 4-MePy, and Py as axial ligands, exists as an equilibrium mixture of saddled and ruffled isomers both of which adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state. The stability of the (d(xz), d(yz))(4)(d(xy))(1) ground state is ascribed to the strong bonding interaction between the iron d(xy) and porphyrin a(1u) orbitals in the saddled conformer caused by the high energy of the a(1u) highest occupied molecular orbital in TBzTArP. Similarly, a bonding interaction occurs between the d(xy) and a(2u) orbitals in the ruffled conformer. In addition, the bonding interaction of the d(π) orbitals with the low-lying lowest unoccupied molecular orbital, which is an inherent characteristic of TBzTArP, can also contribute to stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号