首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The introduction of the resolution-of-the-identity (RI) approximation for electron repulsion integrals in quantum chemical calculations requires in addition to the orbital basis so-called auxiliary or fitting basis sets. We report here such auxiliary basis sets optimized for second-order Møller–Plesset perturbation theory for the recently published (Weigend and Ahlrichs Phys Chem Chem Phys, 2005, 7, 3297–3305) segmented contracted Gaussian basis sets of split, triple-ζ and quadruple-ζ valence quality for the atoms Rb–Rn (except lanthanides). These basis sets are designed for use in connection with small-core effective core potentials including scalar relativistic corrections. Hereby accurate resolution-of-the-identity calculations with second-order Møller–Plesset perturbation theory (MP2) and related methods can now be performed for molecules containing elements from H to Rn. The error of the RI approximation has been evaluated for a test set of 385 small and medium sized molecules, which represent the common oxidation states of each element, and is compared with the one-electron basis set error, estimated based on highly accurate explicitly correlated MP2–R12 calculations. With the reported auxiliary basis sets the RI error for MP2 correlation energies is typically two orders of magnitude smaller than the one-electron basis set error, independent on the position of the atoms in the periodic table.  相似文献   

2.
Correlation consistent basis sets have been optimized for use with explicitly correlated F12 methods. The new sets, denoted cc-pVnZ-F12 (n=D,T,Q), are similar in size and construction to the standard aug-cc-pVnZ and aug-cc-pV(n+d)Z basis sets, but the new sets are shown in the present work to yield much improved convergence toward the complete basis set limit in MP2-F12/3C calculations on several small molecules involving elements of both the first and second row. For molecules containing only first row atoms, the smallest cc-pVDZ-F12 basis set consistently recovers nearly 99% of the MP2 valence correlation energy when combined with the MP2-F12/3C method. The convergence with basis set for molecules containing second row atoms is slower, but the new DZ basis set still recovers 97%-99% of the frozen core MP2 correlation energy. The accuracy of the new basis sets for relative energetics is demonstrated in benchmark calculations on a set of 15 chemical reactions.  相似文献   

3.
The atomic orbital basis set limit is approached in periodic correlated calculations for solid LiH. The valence correlation energy is evaluated at the level of the local periodic second order M?ller-Plesset perturbation theory (MP2), using basis sets of progressively increasing size, and also employing "bond"-centered basis functions in addition to the standard atom-centered ones. Extended basis sets, which contain linear dependencies, are processed only at the MP2 stage via a dual basis set scheme. The local approximation (domain) error has been consistently eliminated by expanding the orbital excitation domains. As a final result, it is demonstrated that the complete basis set limit can be reached for both HF and local MP2 periodic calculations, and a general scheme is outlined for the definition of high-quality atomic-orbital basis sets for solids.  相似文献   

4.
A series of auxiliary basis sets to fit Coulomb potentials for the elements H to Rn (except lanthanides) is presented. For each element only one auxiliary basis set is needed to approximate Coulomb energies in conjunction with orbital basis sets of split valence, triple zeta valence and quadruple zeta valence quality with errors of typically below ca. 0.15 kJ mol(-1) per atom; this was demonstrated in conjunction with the recently developed orbital basis sets of types def2-SV(P), def2-TZVP and def2-QZVPP for a large set of small molecules representing (nearly) each element in all of its common oxidation states. These auxiliary bases are slightly more than three times larger than orbital bases of split valence quality. Compared to non-approximated treatments, computation times for the Coulomb part are reduced by a factor of ca. 8 for def2-SV(P) orbital bases, ca. 25 for def2-TZVP and ca. 100 for def2-QZVPP orbital bases.  相似文献   

5.
Auxiliary basis sets for density fitting second-order Moller-Plesset perturbation theory (DF-MP2) have been optimized for use with the triple-zeta nonrelativistic all-electron correlation consistent orbital basis sets, cc-pVTZ-NR and aug-cc-pVTZ-NR, for the 3d elements Sc-Zn. The relative error in using these auxiliary basis sets is found to be around four orders of magnitude smaller than that from utilizing triple-zeta orbital basis sets rather than corresponding quadruple-zeta basis sets, in calculation of the correlation energy for a test set of 54 small to medium sized transition metal complexes.  相似文献   

6.
The choice of basis set in quantum chemical calculations can have a huge impact on the quality of the results, especially for correlated ab initio methods. This article provides an overview of the development of Gaussian basis sets for molecular calculations, with a focus on four popular families of modern atom‐centered, energy‐optimized bases: atomic natural orbital, correlation consistent, polarization consistent, and def2. The terminology used for describing basis sets is briefly covered, along with an overview of the auxiliary basis sets used in a number of integral approximation techniques and an outlook on possible future directions of basis set design. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Seven different types of Slater type basis sets for the elements H (Z = 1) up to E118 (Z = 118), ranging from a double zeta valence quality up to a quadruple zeta valence quality, are tested in their performance in neutral atomic and diatomic oxide calculations. The exponents of the Slater type functions are optimized for the use in (scalar relativistic) zeroth-order regular approximated (ZORA) equations. Atomic tests reveal that, on average, the absolute basis set error of 0.03 kcal/mol in the density functional calculation of the valence spinor energies of the neutral atoms with the largest all electron basis set of quadruple zeta quality is lower than the average absolute difference of 0.16 kcal/mol in these valence spinor energies if one compares the results of ZORA equation with those of the fully relativistic Dirac equation. This average absolute basis set error increases to about 1 kcal/mol for the all electron basis sets of triple zeta valence quality, and to approximately 4 kcal/mol for the all electron basis sets of double zeta quality. The molecular tests reveal that, on average, the calculated atomization energies of 118 neutral diatomic oxides MO, where the nuclear charge Z of M ranges from Z = 1-118, with the all electron basis sets of triple zeta quality with two polarization functions added are within 1-2 kcal/mol of the benchmark results with the much larger all electron basis sets, which are of quadruple zeta valence quality with four polarization functions added. The accuracy is reduced to about 4-5 kcal/mol if only one polarization function is used in the triple zeta basis sets, and further reduced to approximately 20 kcal/mol if the all electron basis sets of double zeta quality are used. The inclusion of g-type STOs to the large benchmark basis sets had an effect of less than 1 kcal/mol in the calculation of the atomization energies of the group 2 and group 14 diatomic oxides. The basis sets that are optimized for calculations using the frozen core approximation (frozen core basis sets) have a restricted basis set in the core region compared to the all electron basis sets. On average, the use of these frozen core basis sets give atomic basis set errors that are approximately twice as large as the corresponding all electron basis set errors and molecular atomization energies that are close to the corresponding all electron results. Only if spin-orbit coupling is included in the frozen core calculations larger errors are found, especially for the heavier elements, due to the additional approximation that is made that the basis functions are orthogonalized on scalar relativistic core orbitals.  相似文献   

8.
SCF-CI calculations have been performed on a number of chemical reactions between closed shell molecules in order to determine the heats of reaction. Contracted Gaussian type atomic basis sets of three different qualities were used and the CI calculations were performed in a truncated approximate natural orbital space. The conclusions to be drawn from these calculations are rather pessimistic. For heats of reaction, errors up to 6 kcal/mole are obtained on the SCF-level with a double zeta plus polarization atomic basis. A further improvement is only possible if extended basis sets are used. Correlation effects on heats of reaction are of the same size and CI calculations are therefore only meaningful with large atomic basis sets.For the CI calculations a one-electron space of approximate natural orbitals, obtained from second order RS perturbation theory, was used. Different truncations, using the occupation number as criterion, were tested. The general conclusion is that errors in energy differences obtained with a truncated basis set are of the same magnitude as the error in the total correlation energy. In practice this means that not more than 20–30% of the approximate natural orbitals can be deleted if the error is to be kept less than a few kcal/mole.Finally the truncation error in calculations of bond distances was tested for a few cases. Errors of around 10% of the total change due to correlation were found when 30% of the lowest occupied natural orbitals were deleted.  相似文献   

9.
For elements H to Rn (except Lanthanides), a series of auxiliary basis sets fitting exchange and also Coulomb potentials in Hartree–Fock treatments (RI-JK-HF) is presented. A large set of small molecules representing nearly each element in all its common oxidation states was used to assess the quality of these auxiliary bases. For orbital basis sets of triple zeta valence and quadruple zeta valence quality, errors in total energies arising from the RI-JK approximation are below ∼1 meV per atom in molecular compounds. Accuracy of RI-JK-approximated HF wave functions is sufficient for being used for post-HF treatments like Møller–Plesset perturbation theory, MP2. Compared to nonapproximated treatments, RI-JK-HF leads to large computational savings for quadruple zeta valence orbital bases and, in case of small to midsize systems, to significant savings for triple zeta valence bases. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008  相似文献   

10.
Lobe gaussian and cartesian gaussian basis sets, of approximately minimal basis Slater accuracy, have been compared for molecular calculations. The basis sets were constructed so that they only differed in the representation of the angular dependence of the p function. Calculation of total energy and several one-electron properties for a series of nine molecules shows that, for molecular calculations, the lobe and cartesian gaussian representations are equivalent.  相似文献   

11.
Ab initio calculations are reported for dimerization-induced changes, Δk, in the harmonic force constant k of the H-bonded OH in water dimer. Two dimer geometries are considered. Δk is obtained by considering the perturbation of a given monomer OH potential by the interaction energy in the dimer in question. The interaction energy is partitioned to identify the role of the various contributions to Δk. The sensitivity of Δk to the choice of the one-electron basis set is studied by using five different basis sets, some of which have a set of bond functions in the H? O bond. At the correlated level, correction for basis set superposition error is found to be essential. A comparison is made of the correlation contribution to Δk as given by the CEPA1, MP2, MP3, and MP4 methods. Of these, MP2 gives exaggerated results. Nevertheless, for economical and reasonably accurate calculations on large systems the MP2 approach in the ESPB basis set is advocated. The most accurate calculations yield a shift Δv0-;1 of – 121 cm?1 for the uncoupled donor O-H vibrational frequency in water dimer.  相似文献   

12.
With recent advances in electronic structure methods, first-principles calculations of electronic response properties, such as linear and nonlinear polarizabilities, have become possible for molecules with more than 100 atoms. Basis set incompleteness is typically the main source of error in such calculations since traditional diffuse augmented basis sets are too costly to use or suffer from near linear dependence. To address this problem, we construct the first comprehensive set of property-optimized augmented basis sets for elements H-Rn except lanthanides. The new basis sets build on the Karlsruhe segmented contracted basis sets of split-valence to quadruple-zeta valence quality and add a small number of moderately diffuse basis functions. The exponents are determined variationally by maximization of atomic Hartree-Fock polarizabilities using analytical derivative methods. The performance of the resulting basis sets is assessed using a set of 313 molecular static Hartree-Fock polarizabilities. The mean absolute basis set errors are 3.6%, 1.1%, and 0.3% for property-optimized basis sets of split-valence, triple-zeta, and quadruple-zeta valence quality, respectively. Density functional and second-order M?ller-Plesset polarizabilities show similar basis set convergence. We demonstrate the efficiency of our basis sets by computing static polarizabilities of icosahedral fullerenes up to C(720) using hybrid density functional theory.  相似文献   

13.
This work compares the performance of theoretical methods and basis sets on the molecular structure, atomisation and ionisation energies, electron affinity, and vibrational spectrum of silylene. Silylene, its cation and anion have been studied in 1 A 1, 2 A 1 and 2 B 1 states, respectively, in the gas phase and C2v symmetry. The methods considered are second-order Møller-Plesset perturbation theory (MP2), the density functional theory (DFT), Gaussian-2 (G2) and complete basis set methods (CBS-4M and CBS-Q). The basis sets used are 6-31G(d,p), 6-311G(d,p), 6-31++G(d,p) and 6-311++G(d,p). The functional used for the DFT method is B3LYP. Silylene and its cation and anion have been optimised using the MP2 and DFT methods and the named basis sets. Single-point energy calculations (G2, CBS-4M and CBS-Q) were performed using MP2/6-311++G(d,p) structures and these energies have been used to calculate atomisation energy, ionisation energy and adiabatic electron affinity. Frequency calculations were also done and the raw vibrational frequencies were assigned. It is interesting to note the close similarity between the predicted parameters and some of the available literature values. The results obtained are consistent and converge with different basis sets with improved size and quality. However, the parameters obtained are very much method dependent.  相似文献   

14.
15.
The explicitly correlated second order M?ller-Plesset (MP2-R12) methods perform well in reproducing the last detail of the correlation cusp, allowing higher accuracy than can be accessed through conventional means. Nevertheless in basis sets that are practical for calculations on larger systems (i.e., around triple- or perhaps quadruple-zeta) MP2-R12 fails to bridge the divide between conventional MP2 and the MP2 basis set limit. In this contribution we analyse the sources of error in MP2-R12 calculations in such basis sets. We conclude that the main source of error is the choice of the correlation factor r12. Sources of error that must be avoided for accurate quantum chemistry include the neglect of exchange commutators and the extended Brillouin condition. The generalized Brillouin condition is found not to lead to significant errors.  相似文献   

16.
17.
We seek correlation-consistent diffuse-augmented double-zeta and triple-zeta basis sets that perform optimally in extrapolating the correlation energy to the one-electron complete basis set limit, denoted oAVXZ and oAV(X + d)Z. The novel basis sets are method-dependent in that they are trained to perform optimally for the correlation energy at each specific level of theory. They are shown to yield accurate results in calculating both the energy and tensorial properties such as polarizabilities while not significantly altering the Hartree-Fock energy. Quantitatively, complete basis set limit (CBS)-/(oAVdZ,oAVtZ)-extrapolated correlation energies typically outperform, by 3- to 5-fold, the ones calculated with traditional ansatzes of similar flexibility. Attaining energies of CBS/(AVtZ,AVqZ) type or better accuracy, they frequently outperform expensive raw explicitly correlated ones. Promisingly, a limited test on CBS-extrapolated energies based on conventional basis sets has shown that they compare well even with extrapolated explicitly correlated ones. Calculated atomization and dissociation energies, molecular geometries, ionization potentials, and electron affinities also tend to outperform the ones obtained with traditional Dunning's ansatzes from which the new basis sets have been determined. The method for basis set generation is simple, and there is no reason of principle why the approach could not be adapted for handling other bases in the literature.  相似文献   

18.
NHF and NMCSCF results for Cu2 are compared with calculations employing basis set expansions. We find that nearly all previous SCF calculations using Gaussian basis sets have underestimated the bond length by about the same amount (0.03 Å) as that attributed to the unlinked cluster and relativistic corrections. The error is shown to be due to deficiencies in the 3d primitive set which yield sizable basis set superposition errors.  相似文献   

19.
The balanced addition of polarization functions to the 6–31G and 6–311G basis sets for correlated wave functions is evaluated using bond energy predictions at the MP 2 and full MP 4 levels as a measure of correlation-balanced basis sets. The homolytic dissociations of the XH bonds in H2, CH4, NH3, H2O, and HF and the XY bonds in C2H6, NH2NH2, HOOH, and CH3OH are used as the basis for the evaluation. It is found that correlation balance is achieved for HH, XH, and XY bonds, particularly at the MP 2 level, only if at least as many polarization sets, and sometimes more, are added to the hydrogens as are added to the heavy atoms.  相似文献   

20.
A new two-point scheme is proposed for the extrapolation of electron correlation energies obtained with small basis sets. Using the series of correlation-consistent polarized valence basis sets, cc-pVXZ, the basis set truncation error is expressed as deltaE(X) proportional, variant(X + xi(i))(-gamma). The angular momentum offset xi(i) captures differences in effective rates of convergence previously observed for first-row molecules. It is based on simple electron counts and tends to values close to 0 for hydrogen-rich compounds and values closer to 1 for pure first-row compounds containing several electronegative atoms. The formula is motivated theoretically by the structure of correlation-consistent basis sets which include basis functions up to angular momentum L = X-1 for hydrogen and helium and up to L = X for first-row atoms. It contains three parameters which are calibrated against a large set of 105 reference molecules (H, C, N, O, F) for extrapolations of MP2 and CCSD valence-shell correlation energies from double- and triple-zeta (DT) and triple- and quadruple-zeta (TQ) basis sets. The new model is shown to be three to five times more accurate than previous two-point schemes using a single parameter, and (TQ) extrapolations are found to reproduce a small set of available R12 reference data better than even (56) extrapolations using the conventional asymptotic limit formula deltaE(X) proportional, variantX(-3). Applications to a small selection of boron compounds and to neon show very satisfactory results as well. Limitations of the model are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号