首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seven synthetic anion transporters (SAT) of the general form R(2)N-COCH(2)OCH(2)CO-(Gly)(3)-Pro-(Gly)(3)-OR' were prepared. Three pairs of compounds each contained twin n-hexyl, n-decyl, and n-octadecyl (R) groups at the N-terminus and one contained twin n-tetradecyl groups. Three of the compounds were C-terminated by benzyl and three by heptyl (R') residues. The ability of these compounds to mediate ion release from phospholipid vesicles was assessed. Chloride release was measured by ion selective electrode measurements and by chloride quenching of the fluorescent dye lucigenin. Transport of the anion carboxyfluorescein (CF) was measured by fluorescence dequenching. Differences in both the C- (R') and N-terminal (R) residues within the ionophores affected anion transport. The chloride release data acquired by ion selective electrode and fluorescence methods were similar but not identical. A possible carrier mechanism for Cl(-) transport was discredited. Both Cl(-) and CF anions were released from vesicles by these compounds. The results of CF and Cl(-) transport showed good consistency when the ionophore's N-terminal chains were either decyl or octadecyl but not when they were hexyl. The transport of CF and Cl(-) appears to be fundamentally different when R is C(6) compared to C(10) or C(18). Differences between the behavior of SATs with Cl(-) and CF were also reflected in negative ion mass spectrometric studies.  相似文献   

2.
A ditopic ion-pair receptor (1), which has tunable cation- and anion-binding sites, has been synthesized and characterized. Spectroscopic analyses provide support for the conclusion that receptor 1 binds fluoride and chloride anions strongly and forms stable 1:1 complexes ([1·F](-) and [1·Cl](-)) with appropriately chosen salts of these anions in acetonitrile. When the anion complexes of 1 were treated with alkali metal ions (Li(+), Na(+), K(+), Cs(+), as their perchlorate salts), ion-dependent interactions were observed that were found to depend on both the choice of added cation and the initially complexed anion. In the case of [1·F](-), no appreciable interaction with the K(+) ion was seen. On the other hand, when this complex was treated with Li(+) or Na(+) ions, decomplexation of the bound fluoride anion was observed. In contrast to what was seen with Li(+), Na(+), K(+), treating [1·F](-) with Cs(+) ions gave rise to a stable, host-separated ion-pair complex, [F·1·Cs], which contains the Cs(+) ion bound in the cup-like portion of the calix[4]pyrrole. Different complexation behavior was seen in the case of the chloride complex, [1·Cl](-). Here, no appreciable interaction was observed with Na(+) or K(+). In contrast, treating with Li(+) produces a tight ion-pair complex, [1·Li·Cl], in which the cation is bound to the crown moiety. In analogy to what was seen for [1·F](-), treatment of [1·Cl](-) with Cs(+) ions gives rise to a host-separated ion-pair complex, [Cl·1·Cs], in which the cation is bound to the cup of the calix[4]pyrrole. As inferred from liposomal model membrane transport studies, system 1 can act as an effective carrier for several chloride anion salts of Group 1 cations, operating through both symport (chloride+cation co-transport) and antiport (nitrate-for-chloride exchange) mechanisms. This transport behavior stands in contrast to what is seen for simple octamethylcalix[4]pyrrole, which acts as an effective carrier for cesium chloride but does not operates through a nitrate-for-chloride anion exchange mechanism.  相似文献   

3.
Partitioning of ions from water to the membrane solvent (NPOE) can be quantified by Gibbs free energies of transfer, deltaG(tr,NPOE)(ion). These were derived from transport studies of lipophilic salts through supported liquid membranes (SLMs) in the absence of the carrier. Partition coefficients Kp for various salts can now be calculated. The neutral anion receptors uranyl sal(oph)enes 1-5 transport Cl- and H2PO4- as tetrapropylammonium salts. The transport is diffusion-limited and can be described by two transport parameters Dm and K(ex). From the extraction constants K(ex) and the partition coefficients Kp of the transported salts, the association constants Ka of the anion receptors for Cl- and H2PO4- in NPOE were determined. Competitive transport with carriers 3 and 4 of NPr4H2PO4 and NPr4Cl demonstrated highly selective transport of H2PO4- even in the presence of excess of Cl-.  相似文献   

4.
Four synthetic anion transporters (SATs) having the general formula (n-C(18)H(37))(2)N-COCH(2)OCH(2)CO-(Gly)(3)Pro-Lys(epsilon-N-R)-(Gly)(2)-O-n-C(7)H(15) were prepared and studied. The group R was Cbz, H (TFA salt), t-Boc, and dansyl in peptides 1, 2, 3, and 4 respectively. The glutamine analog (GGGPQAG sequence) was also included. A dansyl-substituted fluorescent SAT was used to probe peptide insertion; the dansyl sidechain resides in an environment near the bilayer's midpolar regime. When the lysine sidechain was free or protected amine, little effect was noted on final Cl(-) transport rate in DOPC : DOPA (7 : 3) liposomes. This stands in contrast to the significant retardation of transport previously observed when a negative glutamate residue was present in the peptide sequence. It was also found that Cl(-) release from liposomes depended on the phospholipid composition of the vesicles. Chloride transport diminished significantly for the free lysine containing SAT, 2, when the lipid was altered from DOPC : DOPA to pure DOPC. Amide-sidechained SATs 1 and 5 showed a relatively small decrease in Cl(-) transport. The effect of lipid composition on Cl(-) transport was explained by differences in electrostatic interaction between amino acid sidechain and lipid headgroup, which was modeled by computation.  相似文献   

5.
The electroneutral Cl(-)/HCO(3)(-) exchange, present at the apical membrane of rabbit gallbladder epithelium, apparently is converted into a stilbene- and dipyridamole-sensitive, nonrectifying, approximately 5-pS anion channel after the exchange is directly inhibited (inhibitors tested: hydrochlorothiazide (HCTZ), phlorizin, phenylglyoxal and diphenylamine-2-carboxylic acid (DPC)). In intact tissue, in the absence of CO(2)/HCO(3)(-) in the media, the opening of these channels causes an approximately 7-mV depolarization of the apical membrane. This has been shown to be a constant index of the total Cl(-) conductance (G(Cl)) activated. The effect of exogenous and endogenous CO(2)/HCO(3)(-) on the depolarization has now been investigated in the intact tissue by conventional microelectrodes. The anion exchange has been measured radiochemically. The presence of exogenous or endogenous CO(2)/HCO(3)(-) reduces the depolarization induced by HCTZ, phlorizin and DPC from approximately 7 to 3 mV, but 10(-4) mol/l acetazolamide restores the full depolarization. Response time, S(0.5) and Hill number are unchanged in each case. The way of bicarbonate replacement is irrelevant. The depolarization generated by phenylglyoxal, which covalently binds to the transport site of the exchanger and prevents HCO(3)(-) binding, is unaffected by CO(2)/HCO(3)(-) presence. HCO(3)(-) binding to the transport site is suggested to partially hinder the conversion of the exchanger into the channel.  相似文献   

6.
Self-assembly is a desired property in supramolecular chemistry, but extensive aggregation may be counterproductive. Rigid systems typically have better organization, but are inherently less dynamic. This work shows that ion transport by amphiphilic heptapeptides (synthetic anion transporters or SATs) is affected by aggregation of the monomers in the bulk aqueous phase to which they are added and within the bilayer. Ion transport was assessed for all compounds by assay of Cl(-) release from liposomes. The mechanism of ion transport was confirmed by planar bilayer conductance studies for two compounds at opposite ends of the efficacy scale. Dynamic light scattering, the Langmuir trough, transmission electron microscopy, ion release from liposomes, and planar bilayer conductance studies were used to assess the importance of self-assembly versus aggregation in ion transport. Generally, greater aggregation was has an adverse effect on the transport, although at least dimerization is required for amphiphilic heptapeptides to readily transport Cl(-). Anion transport in these systems was found to be sensitive to changes in the C-terminal portion of the (Gly)(3)Pro(Gly)(3) sequence. Moreover, a significant difference in transport efficacy was apparent when L-Trp was replaced by D-Trp in the same position.  相似文献   

7.
Polychlorethylene radicals, anions, and radical anions are potential intermediates in the reduction of polychlorinated ethylenes (C(2)Cl(4), C(2)HCl(3), trans-C(2)H(2)Cl(2), cis-C(2)H(2)Cl(2), 1,1-C(2)H(2)Cl(2), C(2)H(3)Cl). Ab initio electronic structure methods were used to calculate the thermochemical properties, (298.15 K), S degrees (298.15 K,1 bar), and DeltaG(S)(298.15 K, 1 bar) of 37 different polychloroethylenyl radicals, anions, and radical anion complexes, C(2)H(y)Cl(3)(-)(y)(*), C(2)H(y)Cl(3)(-)(y)(-), and C(2)H(y))Cl(4)(-)(y)(*)(-) for y = 0-3, for the purpose of characterizing reduction mechanisms of polychlorinated ethylenes. In this study, 8 radicals, 7 anions, and 22 radical anions were found to have stable structures, i.e., minima on the potential energy surfaces. This multitude of isomers for C(2)H(y)Cl(4)(-)(y)(*)(-) radical anion complexes are pi*, sigma*, and -H...Cl(-) structures. Several stable pi* radical anionic structures were obtained for the first time through the use of restricted open-shell theories. On the basis of the calculated thermochemical estimates, the overall reaction energetics (in the gas phase and aqueous phase) for several mechanisms of the first electron reduction of the polychlorinated ethylenes were determined. In almost all of the gas-phase reactions, the thermodynamically most favorable pathways involve -H...Cl(-) complexes of the C(2)H(y)Cl(4)(-)(y)(*)(-) radical anion, in which a chloride ion is loosely bound to a hydrogen of a C(2)H(x)Cl(2)(-)(x))(*) radical. The exception is for C(2)Cl(4), in which the most favorable anionic structure is a loose sigma* radical anion complex, with a nearly iso-energetic pi* radical anion. Solvation significantly changes the product energetics with the thermodynamically most favorable pathway leading to C(2)H(y)Cl(3)(-)(y)(*) + Cl(-). The results suggest that a higher degree of chlorination favors reduction, and that reduction pathways involving the C(2)H(y)Cl(3)(-)(y)(-) anions are high energy pathways.  相似文献   

8.
The gas-phase reactivity of the CHCl*- anion has been investigated with a series of halomethanes (CCl4, CHCl3, CH2Cl2, and CH3Cl) using a FA-SIFT instrument. Results show that this anion primarily reacts via substitution and by proton transfer. In addition, the reactions of CHCl*- with CHCl3 and CH2Cl2 form minor amounts of Cl2*- and Cl-. The isotopic distribution of these two products is consistent with an insertion-elimination mechanism, where the anion inserts into a C-Cl bond to form an unstable intermediate, which eliminates either Cl2*- or Cl- and Cl*. Neutral and cationic carbenes are known to insert into single bonds; however, this is the first observation of such reactivity for carbene anions.  相似文献   

9.
The solvation of fluoride and chloride anions (F(-) and Cl(-), respectively) by water has been studied using effective fragment potentials (EFPs) for the water molecules and ab initio quantum mechanics for the anions. In particular, the number of water molecules required to fully surround each anion has been investigated. Monte Carlo calculations have been used in an attempt to find the solvated system X(-)(H(2)O)(n) (X = F, Cl) with the lowest energy for each value of n. It is predicted that 18 water molecules are required to form a complete solvation shell around a Cl(-) anion, where "complete solvation" is interpreted as an ion that is completely surrounded by solvent molecules. Although fewer water molecules may fully solvate the Cl(-) anion, such structures are higher in energy than partially solvated molecules, up to n > or = 18. Calculations on the F(-) anion suggest that 15 water molecules are required for a complete solvation shell. The EFP predictions are in good agreement with the relative energies predicted by ab initio energy calculations at the EFP geometries.  相似文献   

10.
Conformational energies for the butyl group of 1-butyl-3-methylimidazolium (bmim) were calculated by high-level ab initio methods. Estimated relative energies for the TT, GT and G'T rotamers of an isolated bmim cation at the CCSD(T)/cc-pVTZ level are 0.0 -0.02 and -0.50 kcal/mol, respectively. The close contact of a Cl anion to theC(2)-H of imidazolium considerably increases the relative stability of the GT rotamer. Estimated relative energies for the three rotamers of the [bmim]Cl complex, in which the Cl anion exists close to the C(2)-H, are 0.0, -1.61 and -0.25 kcal/mol, respectively. The GT rotamer is favored by the strong attractive electrostatic interaction between the bmim cation and Cl anion. The C(2)-H group in the GT rotamer has a larger positive charge compared with those in the TT and G'T rotamers. The contact of a Br anion to the C(2)-H also stabilizes the GT rotamer. The effects of the Cl anion close to the C(4)-Hand C(5)-Hare small. The anion effects suggest that the GT rotamer is the most stable in ionic liquids. The positive charge on imidazolium ring does not largely change the conformational energies. Estimated relative energies for the three rotamers of N-butylimidazole (0.0, -0.29 and -0.75 kcal/mol, respectively) are not largely different from those for isolated bmim. Calculated MP2/cc-pVTZ level torsional potential for the C im-N im-C-C bond has a minimum when the torsional angle is close to 90 degrees. Coplanar conformation is not a stable structure. Calculated torsional barrier height between the two nonplanar minima is less than 1 kcal/mol.  相似文献   

11.
Iridium hydridophosphine complexes of general formula [Ir(PR3)2H2(anion)](PR3= PPh3, PMe2Ph; anion =[1-closo-CB(11)H(6)Cl(6)]-, [1-closo-CB(11)H(6)I(6)]-, [BAr(F)4]-) have been prepared by hydrogenation of cyclooctadiene precursor complexes. Solid-state structures of selected examples of these complexes reveal intimate contacts between the carborane anion and cation, with the anion binding through two lower-hemisphere halogen ligands. In CD2Cl2 solution the very weakly coordinating anions [1-closo-CB(11)H(6)Cl(6)]- and [BAr(F)4]- are suggested to favour the formation of solvent complexes such as [Ir(PR3)2H2(solvent)n][anion], while the [1-closo-CB(11)H(6)I(6)]- anion forms a tightly bound complex with the cationic iridium fragment. Calculated DeltaG values for anion reorganisation in d8-toluene reflect this difference in interaction between the anions and cation. With the bulky anion [1-closo-CB(11)Me(5)I(6)]- different complexes are formed: Ir(PPh3)H2(1-closo-HCB(11)Me(5)I(6)) and [(PPh3)3Ir(H2)H2][1-closo-HCB(11)Me(5)I(6)] which have been characterised spectroscopically. Diffusion measurements in CD2Cl2 are also consistent with larger, solvent coordinated, complexes for the more weakly coordinating anions and a tighter interaction between anion and cation for [1-closo-CB(11)H(6)I(6)]-. All the complexes show some ion-paring in solution. Comparison with data previously reported for the [1-closo-CB(11)H(6)Br(6)]- anion shows that this anion--as expected--fits between [1-closo-CB(11)H(6)Cl(6)]- and [1-closo-CB(11)H(6)I(6)]- in terms of coordinating ability. Although not coordinating, the large [1-closo-CB(11)H(6)Cl(6)]- and [BAr(F)4)]- anions do provide some stabilisation towards the metal centre, as decomposition to the hydride bridged dimer [Ir2(PPh3)4H5]+ is retarded. This is in contrast to the [PF6]- salt where decomposition is immediate. As expected, complexes with the smaller phosphine PMe2Ph form tighter interactions with the carborane anions. These observations on the interaction between anion and cation in solution are reflected in benchmark hydrogenation studies that show a significant attenuation in rate of hydrogenation of cyclohexane on using the [1-closo-CB(11)H(6)I(6)]- anion or complexes with the PMe2Ph phosphine. We also comment on the reusability of the catalysts and their tolerance to water and oxygen impurities. Overall the catalyst with the [1-closo-CB(11)H(6)Br(6)]- anion shows the best combination of rate of hydrogenation, reusability and tolerance to impurities.  相似文献   

12.
In the presence of methanol the tetrakis(benzoxazines) complex tetramethylammonium cation within the cavity, and the cavity is completely sealed by two intramolecular hydrogen bonds between amide groups. The Cl(-) anion is found external to the cavity. In CHCl(3), Me(4)N(+) is complexed within the cavity, but the Cl(-) anion acts as a stopper in the upper rim of the cavity, hydrogen-bonded to the amide groups. The solution results are supported by single-crystal X-ray structural studies of both the single-molecule molecular capsules, and those stoppered by Cl(-).  相似文献   

13.
Polychloride monoanions stabilized by quaternary ammonium salts are investigated using Raman spectroscopy and state-of-the-art quantum-chemical calculations. A regular V-shaped pentachloride is characterized for the [N(Me)(4)][Cl(5)] salt, whereas a hockey-stick-like structure is tentatively assigned for [N(Et)(4)][Cl(2)???Cl(3)(-)]. Increasing the size of the cation to the quaternary ammonium salts [NPr(4)](+) and [NBu(4)](+) leads to the formation of the [Cl(3)](-) anion. The latter is found to be a pale yellow liquid at about 40 °C, whereas all the other compounds exist as powders. Further to these observations, the novel [Cl(9)](-) anion is characterized by low-temperature Raman spectroscopy in conjunction with quantum-chemical calculations.  相似文献   

14.
The solid state solvation of HCl molecules with small ammonia clusters at an average temperature of 100 K was investigated by on-the-fly molecular dynamics methodology. Structures close to the proton jump from HCl molecule to the ammonia have been further checked with the MP2/aug-cc-pvDZ calculations. Ionization of HCl and/or sharing of the proton were found. Two Zundel-type ions were observedone with proton being shared between ammonium ion and Cl (-) anion (Cl (-)...H (+)...NH 3) in all complexes, and the second, between hydrogen chloride and Cl (-) anion in the HCl...Cl (-)...NH 4 (+)...(NH 3) 2 complex. However, in contrast to methanol clusters, ammonia clusters are not good for the proton wires since once the proton moves to ammonia, it is localized on the ammonium ion units.  相似文献   

15.
Both calculations and experimental data, showing the possibility of formation of I3-, I2Cl-, and ICl2- anions through ICl reduction processes, are described in detail. The above processes were used successfully for the preparation of different molecular conductors based on trihalide anions and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF). The reaction between ICl and BEDT-TTF occurring in a strong polar reaction media (epsilon > or = 34.8 D) results in the formation of novel molecular conductors containing different sets of the I3-, I2Cl-, and ICl2- anions: beta-(BEDT-TTF)2[(I3)0.4(I2Cl)0.6], beta'BEDT-TTF)2[(I2Cl)0.2(ICl2)0.8], and beta' '-('-(BEDT-TTF)2[(I3)0.075(I2Cl)0.150(ICl2). These molecular conductors reveal semiconducting (beta'-phase) as well as metallic (beta- and beta' '-phases) transport properties. It is also shown that in the reaction media with polarity less than 18.4 D only the I3- anion is incorporated in the BEDT-TTF-based molecular crystals. This fact is an unexpected outcome of our study.  相似文献   

16.
The ionic multicomponent complex complex: ([Cr(I)(PhH)(2)].+))(2)[Co(II)TPP(C(60)(CN)(2))]-[C(60)(CN)(2)](.-).3(o-C(6)H(4)Cl(2)) (Co(II)TPP: cobalt (II) tetraphenylporphyrin; Cr(PhH)(2): bis(benzene)chromium; o-C(6)H(4)Cl(2): o-dichlorobenzene) containing CoTPP(C(60)(CN)(2)- anion and C(60)(CN)(2).- radical anion was obtained. The complex has the cage structure with channels, which accommodate Cr(I)(PhH)(2)(.+) and o-C(6)H(4)Cl(2) molecules. For the first time the sigma-bonding of Co(II)TPP to the fullerene radical anion with the essentially shortened Co.C(C(60)(CN)(2)) contact of 2.282 A is observed. The sigma-bonding results in the diamagnetism of Co(II)TPP(C(60)(CN)(2))(-) anion. The nonbonded C(60)(CN)(2)(.-) radical anion retains both the C(2)(v)symmetry and the shape of the molecule. The length of the C(triple bond)N bonds is 1.141 and 1.152 A.  相似文献   

17.
Cl(-)·CH(3)I cluster anion photoelectron images are recorded over a range of detachment wavelengths in the immediate post threshold region. The photoelectron spectral features fall into two categories. A number of weak, photon energy dependent transitions are observed and attributed to atomic anion fragmentation products. Several more intense, higher electron binding energy transitions result from single photon cluster anion detachment. Comparison with I(-)·CH(3)I suggests that the detachment process is more complicated for Cl(-)·CH(3)I. The single photon transition spacing is consistent with CH(3)I ν(3) mode excitation, but the two distinct vibronic bands of I(-)·CH(3)I detachment are not easily distinguished in the Cl(-)·CH(3)I spectra. Similarly, while the spectral intensities for both cluster anions show non-Franck Condon behavior, the level of vibrational excitation appears greater for Cl(-)·CH(3)I detachment. These observations are discussed in terms of low lying electronic states of CH(3)I along the C-I coordinate, and the influence of the CH(3)I moiety on the neutral halogen atom states.  相似文献   

18.
Amide-functionalised salen ligands capable of extracting metal salts have been synthesised and characterised. Single-crystal X-ray structure determinations of complexes of NiSO4, [Ni(L)(SO4)], confirm that the ionophores are in a zwitterionic form with Ni(II) bound in the deprotonated salen moiety and the SO4(2-) ion associated with protonated pendant N'-amidopiperazine groups. Treatment of [Ni(L)(SO4)] with base removes the protons from the pendant amido-amine group resulting in loss of the SO4(2-) ion and formation of metal-only complexes of type [Ni(L-2H)], which have been characterized by single-crystal X-ray diffraction. Three of the ligands with solubilities suitable for solvent extraction studies show loading and stripping pH-profiles that are suitable for the recovery of CuSO4 or CuCl2 from industrial leach solutions. The copper-only complexes, [Cu(L-2H)], are selective for Cl- over SO4(2-) in both solvent extraction and bulk liquid membrane transport experiments and were found to bind Cl- in two steps via the formation of a 1:1:1 [Cu(L-H)Cl] assembly, followed by a 1:1:2 [Cu(L)Cl2] assembly as the pH of the aqueous phase is lowered. The anion transport selectivity was evaluated for a number of other mono-charged anions and interestingly the ligands were found to display a preference for the Br- ion. To probe the influence of the Hofmeister bias on the selectivity of anion complexation, single-phase potentiometric titration experiments were employed to investigate the binding of SO4(2-) and Cl- by one of the copper only complexes, [Cu(L-2H)] in 95 %/5 % MeOH/water. Under these conditions selectivity was reversed (SO4(2-)>Cl-) confirming that the Hofmeister bias, which reflects the relative hydration energies of the anions, dominates the selectivity of anion extraction from aqueous media into CHCl3.  相似文献   

19.
We have carried out a series of molecular dynamics simulations to investigate the dynamics of X(-)-water (X = F, Cl, Br, and I) and water-water hydrogen bonds in aqueous alkali halide solutions at room temperature and also of Cl(-)-water and water-water hydrogen bonds at seven different temperatures ranging from 238 to 318 K. The hydrogen bonds are defined by using a set of configurational criteria with respect to the anion(oxygen)-oxygen and anion(oxygen)-hydrogen distances and the anion(oxygen)-oxygen-hydrogen angle for an anion(water)-water pair. The results of the hydrogen bond dynamics are obtained for two different cutoff values for the angular criterion. In both cases, similar dynamical behavior of the hydrogen bonds is found with respect to their dependence on ion size and temperature. The fluoride ion-water hydrogen bonds are found to break at a much slower rate than water-water hydrogen bonds, while the lifetimes of chloride and bromide ion-water hydrogen bonds are found to be shorter than those of fluoride ion-water ones but still longer than water-water hydrogen bonds. The short-time dynamics of iodide ion-water hydrogen bonds is found to be slightly faster, while its long-time dynamics is found to be slightly slower than the corresponding water-water hydrogen bond dynamics. Correlations of the observed dynamics of anion(water)-water hydrogen bonds with those of rotational and translational diffusion and residence times of water molecules in ion(water) hydration shells are also discussed. With variation of temperature, the lifetimes of both Cl(-)-water and water-water hydrogen bonds are found to show Arrhenius behavior with a slightly higher activation energy for the Cl(-)-water hydrogen bonds.  相似文献   

20.
QY Cao  T Pradhan  MH Lee  K No  JS Kim 《The Analyst》2012,137(19):4454-4457
A novel ferrocene-based anion receptor bearing amide and triazolium donor groups and its anion complexation have been reported. We found that it shows marked electrochemical selectivity to F(-), followed by AcO(-) > Cl(-) > Br(-) > I(-), which is in accordance with (1)H NMR titration results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号