首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mesoporous SBA-15 type of hybrid material (phen-SBA-15) covalently bonded with 1,10-phenanthroline (phen) ligand was synthesized by co-condensation of tetraethoxysilane (TEOS) and the chelate ligand 5-[N,N-bis-3-(triethoxysilyl)propyl]ureyl-1,10-phenanthroline (phen-Si) in the presence of Pluronic P123 surfactant as a template. The preservation of the chelate ligand structure during the hydrothermal synthesis and the surfactant extraction process was confirmed by Fourier transform infrared (FTIR) and (29)Si MAS NMR spectroscopies. SBA-15 consisting of the highly luminescent ternary complex Eu(TTA)(3)phen (TTA = 2-thenoyltrifluoroacetone) covalently bonded to a silica-based network, which was designated as Eu(TTA)(3)phen-SBA-15, was obtained by introducing the Eu(TTA)(3).2H(2)O complex into the hybrid materials via a ligand exchange reaction. XRD, TEM, and N(2) adsorption measurements were employed to characterize the mesostructure of Eu(TTA)(3)phen-SBA-15. For comparison, SBA-15 doped with Eu(TTA)(3).2H(2)O and Eu(TTA)(3)phen complexes and SBA-15 covalently bonded with a binary europium complex with phen ligand were also synthesized, and were named SBA-15/Eu(TTA)(3), SBA-15/Eu(TTA)(3)phen, and Eu-phen-SBA-15, respectively. The detailed luminescence studies on all the materials showed that, compared with the doping sample SBA-15/Eu(TTA)(3)phen and binary europium complex functionalized sample Eu-phen-SBA-15, the Eu(TTA)(3)phen-SBA-15 mesoporous hybrid material exhibited higher luminescence intensity and emission quantum efficiency. Thermogravimetric analysis on Eu(TTA)(3)phen-SBA-15 demonstrated that the thermal stability of the lanthanide complex was evidently improved as it was covalently bonded to the mesoporous SBA-15 matrix.  相似文献   

2.
We report an alternative approach, that is, forming Eu(tta)3dpbt (dpbt = 2-( N, N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine, tta = thenoyltrifluoroacetonato) nanoparticles in water/methanol mixtures, to satisfy the combined requirements of good dispersibility in water solutions and efficient long-wavelength sensitization for Eu (III) complexes to be used in biological applications. The size of Eu(tta)3dpbt colloidal particles with very high luminescent capabilities can be modulated to some extent by changing the preparation conditions. The optical excitation window for the Eu (III) luminescence of Eu(tta)3dpbt nanoparticles, extending up to 475 nm, is wider than that of Eu(tta)3dpbt molecules dissolved in toluene. This is the first example for obviously extending the sensitization window of luminescent lanthanide materials to the long-wavelength region by forming nanoparticles of a lanthanide complex. Quantum yields of Eu (III) luminescence of the prepared Eu(tta)3dpbt colloidal particles, with an average diameter of 33.1 nm, are 0.27, 0.27, 0.24, 0.19, 0.14, and 0.01 upon excitation at 402, 420, 430, 440, 450, and 475 nm, respectively. The Eu(tta)3dpbt nanoparticles exhibited excellent two-photon sensitization performance with a highest delta Phi value of 3.2 x 10(5) GM (1 GM = 10(-50) cm4 s photo(-1) particle(-1)) at the excitation wavelength of 832 nm, which is about 7 times higher than the highest value reported for the CdSe/ZnS core-shell quantum dots. The favorable luminescent properties and the good dispersibility in water solutions of the Eu(tta)3dpbt nanoparticles are very promising for the development of new luminescent nanoprobes for bioanalysis.  相似文献   

3.
Herein, novel host–guest films produced by coarse vacuum cosublimation of the parylene C dimer and Eu(tta)3phen are prepared and studied. Eu(tta)3phen sublimation at different temperatures allows films with different concentrations of the Eu complex to be obtained. The films are characterized by Rutherford backscattering spectrometry (RBS), FTIR spectroscopy, X‐ray diffraction (XRD), atomic force microscopy (AFM), and UV/Vis absorption and emission spectroscopy. RBS, FTIR, and XRD reveal the incorporation of Eu(tta)3phen into the parylene matrix. AFM evidences the very flat film surface, which is particularly advantageous for optical applications. UV/Vis absorption and emission analyses confirm that the optical properties of Eu(tta)3phen are preserved in the deposited films. Fluorescence measurements evidence the occurrence of an energy‐transfer process between parylene and Eu(tta)3phen, and this results in an increase in the light emitted by the Eu complex that is as much as five times higher than that emitted by Eu(tta)3phen alone.  相似文献   

4.
长波敏化发光铕配合物纳米粒子的制备与表征   总被引:2,自引:0,他引:2  
以牛血清白蛋白(BSA)为保护剂, 利用沉淀法制备了平均粒径为35 nm的Eu(tta)3dpbt (dpbt = 2-(N,N-二乙基苯胺-4-基)-4,6-二(3,5-二甲基吡唑-1-基)-1,3,5-三嗪, tta = 噻吩甲酰三氟丙酮负离子)荧光纳米粒子. BSA保护Eu(tta)3dpbt纳米粒子在水中分散稳定性高, 光稳定性好, 长波敏化发光性能优良. 其在可见光区激发峰位于415 nm, 激发峰尾部延展至470 nm, 发光量子产率为0.20 (λex=415 nm, 25 ℃). 在近红外双光子激发下可发出纯正的红光, Eu(tta)3dpbt纳米粒子最大双光子激发作用截面为2.4×105 GM (λex=830 nm, 1 GM=10-50 cm4·s·photo-1·particle-1).  相似文献   

5.
Long-wavelength-sensitized luminescent materials are desired for bio-detection. In this paper, we prepared a new kind of luminescent europium nanoparticles by a co-precipitation-condensation method. The luminescent europium complex Eu(tta)3.bpt (tta = thenoyltrifluoroacetonate; bpt = 2-(N,N- di-ethylanilin-4-yl)-4,6-bis(pyrazol-l-yl)-l,3,5-triazine) was used as the active material, being encapsulated in the nanoparticles formed from 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane (PFOTS) and poly(styrene-co-methyl methacrylate) [P(ST-co-MMA)]. The prepared nanoparticles not only can be well dispersed in water but also were of high photostability. Importantly, the nanoparticles displayed maximal excitation wavelength at 425 nm as well as an extended excitation wavelength up to 480 nm and a quantum yield for Eu3+ luminescence of 0.22 (λex= 425 nm, room temperature).  相似文献   

6.
分别制备了二氧化硅壳层厚度为10、25和80 nm的三种Ag@S O2纳米粒子,合成了铕与不同比例苯甲酸根(BA)的配合物、铕与1,10-邻菲罗啉(phen)及2,2′-联吡啶(bpy)的配合物,并对其进行表征.表征结果推测配合物的组成为Eu(BA)nCl3-n·2H2O(n=1,2,3)、Eu(phen)Cl3·2H2O和Eu(bpy)Cl3·2H2O.配合物的荧光光谱显示,在加入Ag@Si O2纳米粒子后,复合物的荧光强度有不同程度的增加,这可能是由于表面等离子体共振造成的.不同硅壳厚度的Ag@Si O2纳米粒子的荧光增强顺序是25 nm80 nm10 nm,这表明二氧化硅核壳厚度约25 nm时有较强的表面等离子体共振效应.此外,在这些复合物中,Eu(phen)Cl3·2H2O复合物的增强效果是最强的,而Eu(BA)nCl3-n·2H2O的增强效果是最弱的.在三个苯甲酸铕配合物中,Eu(BA)3·2H2O的增强效果最弱,其他两个苯甲酸铕复合物增强效果相对较好.原因可能是含氮配合物(Eu(phen)Cl3·2H2O和Eu(bpy)Cl3·2H2O)可以和Ag@SiO2更好地成键,而苯甲酸铕配合物和Ag@Si O2纳米粒子的作用相对较弱.Ag@SiO2纳米粒子有望应用于增强稀土材料的发光.  相似文献   

7.
The synthesis and X-ray crystal structure of the ligand L (4,7-dicarbazol-9-yl-[1,10]-phenanthroline) are reported, as well as those of the molecular complex, [Eu(tta)(3)(L)] (1), (tta = 2-thenoyl trifluoroacetylacetonate). Their photophysical properties have been investigated both in solution and in the solid state. It was shown that the ligands used for designing 1 are well-suited for sensitizing the Eu(III) ion emission, thanks to a favorable position of the triplet state as investigated in the Gd(III) complex [Gd(tta)(3)(L)], (2). The low local symmetry of the Eu(III) ion shown by the X-ray crystal structure of 1 is also revealed by luminescence spectroscopy. Because of interesting volatility and solubility properties, 1 is shown to behave as a real molecular material that can be processed both by thermal evaporation and from solution. When doped in poly(methylmethacrylate) (PMMA), 1 forms air-stable and highly red-emitting plastic materials that can be excited in a wide range of wavelengths from the UV to the visible part of the electromagnetic spectrum (250-560 nm). Absolute quantum yields of 80% have been obtained for films comprising 1-3% of 1. Ellipsometry measurements have been introduced to gain information on physical data of 1. They have been performed on thin films of 1 deposited by thermal evaporation and gave access to the refractive index, n, and the absorption coefficient, k, as a function of the wavelength. A value of 1.70 has been found for n at 633 nm. These thin films also show interesting air-stability.  相似文献   

8.
The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.  相似文献   

9.
Highly fluorescent polymer particles were prepared with Eu beta-diketonates complex as a fluorophore by miniemulsion polymerization technique. Eu beta-diketonates complex has a long decay time, a large Stokes shift, and very narrow emission bands in comparison with other organic fluorescent compounds. Aqueous miniemulsion was prepared by mixing monomer, crosslinker, hydrophobe, and Eu beta-diketonates complex and then putting the mixture into an aqueous solution of surfactant, followed by ultrasonication. An aqueous solution of initiator was added to the miniemulsion to obtain fluorescent polymer particles, which were monodispersed without aggregation. Particle size was decreased to deca-nano scale by increasing the amount of surfactant. Fluorescent intensity was increased by using Eu beta-complex coordinated with additional ligand. Further fluorescence quantum yields and fluorescent properties in the presence of DNA were investigated to the confirm superiority of Eu beta-diketonates complexes in polymer particles.  相似文献   

10.
Y2O3:Eu3+ phosphor nanoparticles (4-8 nm in size) with spherical morphology and narrow size distribution were obtained by calcination of composite Y-Eu hydroxide nanoparticles, which were prepared in sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane or polyethylene glycol mono-4-nonylphenyl ether (NP-5)/cyclohexane reverse micellar systems. This was achieved by the incorporation of the Y-Eu hydroxide nanoparticles into polyurea (PUA) via in situ polymerization of hexamethylene diisocyanate (HDI) in the reverse micellar solution and subsequent calcination of the resulting PUA materials. The emission intensity of the Y2O3:Eu3+ nanoparticles, prepared in the AOT/isooctane system, was significantly lower than that of the micrometer-size particles prepared in a homogeneous aqueous solution, since the calcined nanoparticles contained Na2SO4 impurity derived from the remaining AOT surfactant. The nanoparticles prepared in the NP-5/cyclohexane system, in contrast, showed higher emission intensity compared to the nanoparticles prepared in the AOT/isooctane system and longer luminescence lifetime compared to the micrometer-size particles prepared in the homogeneous aqueous solution. The photoluminescence intensity of Y2O3:Eu3+, prepared via the proposed process was found to decrease with decreasing the particle size.  相似文献   

11.
In this paper,the nanometer-sized(200 nm)quaternary rare-earth complex Eu(BA)(TTA)2phen was successfully prepared by using the method of optimizing chemical precipitation.The characterizations of these nanoparticles were performed by using elemental analysis,thermogravimetric analysis,infrared spectroscopy,fluorescence spectroscopy,transmission electron microscopy and luminescence quantum-yield.The results indicate that they are better than common ternary complexes at light-emitting performance,luminescence properties,thermal stability,uniformity and particle size;they can also be further mixed with a suitable polymer to form functional rare earth polymers.Compared to the common solid materials,the quaternary complex has better and unique characteristics such as nanoparticle size effect and surface effect.A foundation had been laid for the further expansion of its application in the field of light-emitting and magnetic materials.  相似文献   

12.
首先制备了油酸和十一烯酸钠改性的水基磁流体,然后在其存在的情况下,将可聚合的稀土铕配合物单体Eu(AA)3Phen(AA=丙烯酸,phen=邻菲罗啉)与苯乙烯和甲基丙烯酸缩水甘油酯在过硫酸钾的引发下,进行无皂种子乳液聚合来制备荧光磁性高分子微球。 利用透射电子显微镜和动态光散射粒度仪表征了粒子的形貌及粒径,发现荧光磁性微球具有明显的核-壳结构及较窄的粒径分布;通过红外光谱和X射线衍射分析表征了粒子的化学及晶体结构;通过振动样品磁强计和荧光分光光度计表征粒子的磁性及荧光性能,发现荧光磁性微球具有超顺磁性,其荧光发射光谱在594和619 nm处出现Eu3+的特征荧光发射峰。  相似文献   

13.
分别制备了二氧化硅壳层厚度为10、25和80 nm的三种Ag@SiO2纳米粒子, 合成了铕与不同比例苯甲酸根(BA)的配合物、铕与1, 10-邻菲罗啉(phen)及2, 2''-联吡啶(bpy)的配合物, 并对其进行表征. 表征结果推测配合物的组成为Eu(BA)nCl3-n·2H2O (n=1, 2, 3)、Eu(phen)Cl3·2H2O和Eu(bpy)Cl3·2H2O. 配合物的荧光光谱显示, 在加入Ag@SiO2纳米粒子后, 复合物的荧光强度有不同程度的增加, 这可能是由于表面等离子体共振造成的. 不同硅壳厚度的Ag@SiO2纳米粒子的荧光增强顺序是25 nm>80 nm>10 nm, 这表明二氧化硅核壳厚度约25 nm时有较强的表面等离子体共振效应. 此外, 在这些复合物中, Eu(phen)Cl3·2H2O复合物的增强效果是最强的, 而Eu(BA)nCl3-n·2H2O的增强效果是最弱的. 在三个苯甲酸铕配合物中, Eu(BA)3·2H2O的增强效果最弱, 其他两个苯甲酸铕复合物增强效果相对较好. 原因可能是含氮配合物(Eu(phen)Cl3·2H2O和Eu(bpy)Cl3·2H2O)可以和Ag@SiO2更好地成键, 而苯甲酸铕配合物和Ag@SiO2纳米粒子的作用相对较弱. Ag@SiO2纳米粒子有望应用于增强稀土材料的发光.  相似文献   

14.
The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta)4(-) or Eu(tta)4(-) complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C4mim+Tf2N(-)), rather than the hydrated, neutral complexes, M(tta)(3)(H2O)n)(n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C4mim+Tf2N(-) is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C4mim+Ln(tta)4(-) ion pairs which exert little influence on the structure of the ionic liquid phase.  相似文献   

15.
Solution of polystyrene in styrene were dispersed in an aqueous gel phase comprising sodium lauryl sulfate, cetyl alcohol, and water using an emulsification process known to produce monomer droplet sizes inthe submicron size range (referred to as miniemulsion droplets). The shelf-life stabilities of these miniemulsions were studied to determine their relative droplet sizes, and the emulsions were concommitantly polymerized in an isothermal batch reaction calorimeter. The polymerization kinetics and final particle sizes produced were compared with miniemulsion and conventional emulsion polymerizations prepared using equivalent recipes without the addition of polystyrene. The results indicate that polymerization of miniemulsions prepared from polymer solutions produce significantly different kinetics than both miniemulsion and conventional emulsion polymerizations. In general, a small amount of polymer greatly increases the rate of polymerization and the final number of particles produced in the polymerization to the extent where even conventional polymerizations carried out above the critical micelle concentration of the surfactant polymerize more slowly. The results are explained by considering the system to be comprised of small, stable pre-formed monomer-swollen polymer particles which are able to efficiently capture aqueous phase radicals. This enables the system to produce a large final number of particles, similar to the initial number of pre-formed polymer particles, as opposed to miniemulsions and micelles in which only a relatively small fraction of the initial number of species (droplets or micelles) become polymer particles. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
We report the first example of very efficient NIR Circularly Polarized Luminescence (CPL) (around 970 nm) in water, obtained thanks to the combined use of a chiral Yb complex and of poly lactic-co-glycolic acid (PLGA) nanoparticles. [Yb L (tta)2]CH3COO ( L =N, N’-bis(2-pyridylmethylidene)-1,2-(R,R+S,S) cyclohexanediamine and tta=2-thenoyltrifluoroacetonate) shows good CPL in organic solvents, because the tta ligands efficiently sensitize Yb NIR luminescence and the readily prepared chiral ligand L endows the complex with the necessary dissymmetry. PLGA nanoparticles incorporate the complex and protect the metal ion from the intrusion of solvent molecules, while ensuring biocompatibility, water solubility and stability to the complex. Hydrophilic NIR-CPL optical probes can find applications in the field of NIR-CPL bio-assays.  相似文献   

17.
The hybrid microspheres of ZnO/PS with different core-shell structures were prepared in miniemulsion polymerization. 3-(trimethoxysilyl)propyl methacrylate (MPS) was used as a functional co-monomer to enhance the surface polarity of ZnO nanoparticles and to prevent water from quenching the luminescent properties of ZnO. The morphology of hybrid particles was examined with a transmission electron microscope. The luminescence spectra were measured using a Shimadzu RF-5301 PC spectrofluorimeter (Xe source) at room temperature. The crystallization structure of samples was characterized with a Rigaku wide-angle X-ray diffractometer. The chemical composition and structure of the ZnO colloids, MPS-modified ZnO colloids, and ZnO/PS hybrid microspheres were analyzed with IR.  相似文献   

18.
In this paper, we report the synthesis, characterization, crystal structure, and photophysical properties of a Eu(3+) complex of Eu(TTA)(3)Phen, where TTA=2-thenoyltrifluoroacetonate, and Phen=1,10-phenanthroline. Its elementary application for oxygen-sensing application is also investigated by doping it into a polymer matrix of polystyrene (PS). Experimental data suggest that the 3wt% doped Eu(TTA)(3)Phen nanofibrous membrane exhibits a high sensitivity of 3.4 towards oxygen with a good linear relationship of R(2)=0.996. In addition, the 3wt% doped Eu(TTA)(3)Phen nanofibrous membrane owns a quick response of 9s towards molecular oxygen, along with its excellent atmosphere insensitivity and photobleaching resistance. All these results suggest that both Eu(TTA)(3)Phen and Eu(TTA)(3)Phen/PS system are promising candidates for oxygen-sensing optical sensors.  相似文献   

19.
Fluorescent composite materials of exfoliated titania nanosheets, Ti(0.91)O(2), and rare earth (RE) complexes, Eu(phen)(2)Cl(3).2H(2)O and Tb(phen)(2)Cl(3).2H(2)O (phen = 1,10-phenanthroline), were synthesized via flocculation between them. X-ray diffraction measurements and transmission electron microscopy observations confirmed a restacked lamellar structure for the composites, and elemental analysis revealed a high RE complex content of 15 wt %. The decomposition temperature of the complexes trapped in the composites was improved to 420 degrees C from 250 degrees C for the free form. The restacked composite composed of Ti(0.91)O(2) nanosheets and Eu(phen)(2) exhibited characteristic red emission from the complex, while the composite with Tb(phen)(2) gave featureless emission originated from the ligand. This phenomenon can be explained by a shift of triplet state level of the ligand after encapsulation in the host titania nanosheets. The quantum yield of europium complex in the composite was enhanced 1.6 times more than that of the pure complex.  相似文献   

20.
A red-emitting phosphor, Eu(3+)-doped Ca(9)LiGd(2/3)(PO(4))(7), was synthesized by the conventional high-temperature solid-state reaction. X-ray powder diffraction (XRD) analyses confirmed the pure crystalline phase of Whitlockite-type structure. The excitation spectra of Eu(3+) doped Ca(9)LiGd(2/3)(PO(4))(7) were measured in the VUV and UV region indicating an efficient energy transfer process from the host and Gd(3+) to Eu(3+) ions. Upon excitation with VUV and UV radiation, the phosphor showed strong red emission around 611 nm corresponding to the forced electric dipole (5)D(0)→(7)F(2) transition of Eu(3+) ions. The VUV- and UV-excited luminescence spectra of Ca(9)LiGd(2/3)(PO(4))(7):Eu(3+) together with the dependence of the integrated emission intensities on the doping levels were investigated. The Eu(3+) ions were investigated by a tunable laser as an excitation source. The excitation spectra of (7)F(0)→(5)D(0) transitions suggest that there are two families of inequivalent sites for Eu(3+) in this host. The concentration quenching and crystallographic site-occupancy of Eu(3+) ions in Ca(9)LiGd(2/3)(PO(4))(7) host were discussed on the basis of the site selective excitation and emission spectra, the luminescence decay and its crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号